Sangaku Iterations
Is it Wasan?

I happened on a sangaku problem posed by the Japanese mathematician Tumugu Sakuma (1819-1896) who worked at the later years of the Edu period of seclusion by sheer accident. An article in Mathematics magazine by Fukuzo Suzuki just followed the one on the Lights Out puzzle I've been reading. The author referred to a problem in a Japanese book People of Wasan on Record by A. Hirayama (1965) and noted some incorrect results. The problem in the article was a generalization of that in Hirayama's book and asked to find certain relationships in a configuration of an equilateral triangle whose side lines passed though the vertices of a given isosceles triangle. (In the book, the original sangaku required a right isosceles triangle.)

Somehow, I found both the problem and the solution unappealing. However, the problem did not fit the stereotype of the sangaku promoted by Tony Rothman, whose article in Scientific American caused much stir in the math education community. The problem did not have "circles within triangles, spheres within pyramids, ellipsoids surrounding spheres." For this reason alone I thought it worthy to be included in my collection.

But how does one construct an equilateral triangle with the side lines through the vertices of another triangle? A recollection flashed through my mind of another problem where a triangle was obtained as a limit of an iterative procedure. This was a trivial matter to modify the applet and the result is below.

For a given triangle, you can start iterations anywhere by clicking a mouse button. On each step, the iterations go from a point in a direction of a vertex, using all three vertices in a loop. If p0 is the starting point and v0 the first vertex, then the second iterate is chosen according to the formula

  p1 = p0 + (v0 - p0)·Rn/(Rn + Rd)

The secondd is computed analogously via

  p2 = p1 + (v1 - p1)·Rn/(Rn + Rd).

The subsequent iterates are calculated by the formula that forces equal sides at the limit:

(1) pn+1 = pn + (vn - pn)/dist(pn, vn)·(dist(pn, pn-1) + dist(pn-1, pn-2))/2.

As you can easily check this approach works for triangles not necessarily isosceles. However, in the presence of an obtuse angle, the iterations may not converge to a triangle, but to a self-intersecting equilateral hexagon resembling an arrow tip.


This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at, download and install Java VM and enjoy the applet.

What if applet does not run?

Why (1) leads to an equilateral triangle? Assuming the iterations converge, i.e.,

  p3n → A0,
p3n + 1 → B0,
p3n + 2 → C0,

and using a = B0C0, b = A0C0, and c = A0B0, (1) gives in the limit

  a = (b + c)/2,
b = (c + a)/2,
c = (a + b)/2.

This is a system of three linear equations with three quantities a, b, c and solutions that, because of the symmetry, are bound to satisfy a = b = c.


  1. F. Suzuki, An Equilateral Triangle with Sides through the Vertices of an Isosceles Triangle, Mathematics Magazine, Vol. 74, No. 4. (Oct., 2001), pp. 304-310.


  1. Sangaku: Reflections on the Phenomenon
  2. Critique of My View and a Response
  3. 1 + 27 = 12 + 16 Sangaku
  4. 3-4-5 Triangle by a Kid
  5. 7 = 2 + 5 Sangaku
  6. A 49th Degree Challenge
  7. A Geometric Mean Sangaku
  8. A Hard but Important Sangaku
  9. A Restored Sangaku Problem
  10. A Sangaku: Two Unrelated Circles
  11. A Sangaku by a Teen
  12. A Sangaku Follow-Up on an Archimedes' Lemma
  13. A Sangaku with an Egyptian Attachment
  14. A Sangaku with Many Circles and Some
  15. A Sushi Morsel
  16. An Old Japanese Theorem
  17. Archimedes Twins in the Edo Period
  18. Arithmetic Mean Sangaku
  19. Bottema Shatters Japan's Seclusion
  20. Chain of Circles on a Chord
  21. Circles and Semicircles in Rectangle
  22. Circles in a Circular Segment
  23. Circles Lined on the Legs of a Right Triangle
  24. Equal Incircles Theorem
  25. Equilateral Triangle, Straight Line and Tangent Circles
  26. Equilateral Triangles and Incircles in a Square
  27. Five Incircles in a Square
  28. Four Hinged Squares
  29. Four Incircles in Equilateral Triangle
  30. Gion Shrine Problem
  31. Harmonic Mean Sangaku
  32. Heron's Problem
  33. In the Wasan Spirit
  34. Incenters in Cyclic Quadrilateral
  35. Japanese Art and Mathematics
  36. Malfatti's Problem
  37. Maximal Properties of the Pythagorean Relation
  38. Neuberg Sangaku
  39. Out of Pentagon Sangaku
  40. Peacock Tail Sangaku
  41. Pentagon Proportions Sangaku
  42. Proportions in Square
  43. Pythagoras and Vecten Break Japan's Isolation
  44. Radius of a Circle by Paper Folding
  45. Review of Sacred Mathematics
  46. Sangaku à la V. Thebault
  47. Sangaku and The Egyptian Triangle
  48. Sangaku in a Square
  49. Sangaku Iterations, Is it Wasan?
  50. Sangaku with 8 Circles
  51. Sangaku with Angle between a Tangent and a Chord
  52. Sangaku with Quadratic Optimization
  53. Sangaku with Three Mixtilinear Circles
  54. Sangaku with Versines
  55. Sangakus with a Mixtilinear Circle
  56. Sequences of Touching Circles
  57. Square and Circle in a Gothic Cupola
  58. Steiner's Sangaku
  59. Tangent Circles and an Isosceles Triangle
  60. The Squinting Eyes Theorem
  61. Three Incircles In a Right Triangle
  62. Three Squares and Two Ellipses
  63. Three Tangent Circles Sangaku
  64. Triangles, Squares and Areas from Temple Geometry
  65. Two Arbelos, Two Chains
  66. Two Circles in an Angle
  67. Two Sangaku with Equal Incircles
  68. Another Sangaku in Square
  69. Sangaku via Peru
  70. FJG Capitan's Sangaku

|Activities| |Contact| |Front page| |Contents| |Geometry|

Copyright © 1996-2018 Alexander Bogomolny


Search by google: