Equal Incircles Theorem
What Is It About?
A Mathematical Droodle

You probably do not see the applet because nowadays no browser supports Java. Hopefully a solution could eventually be found. Meanwhile, here's what you would see if the applet was working:

Equal incircles theorem, the case of three layers

What if applet does not run?

(The number of points on the base line which is originally 4 can be changed by clicking on it a little off its center line.)


|Activities| |Contact| |Front page| |Contents| |Geometry| |Eye opener|

Copyright © 1996-2018 Alexander Bogomolny

Equal Incircles Theorem

The applet suggests the following theorem [Wells, p. 67] from triangle geometry:

Let A be a point. Assume points Mi, i = 1, 2, ..., N (N > 3) lie on a line not through A. Assume further that the incircles of triangles M1AM2, M2AM3, ..., MN-1AMN all have equal radii. Then the same is true of triangles M1AM3, M2AM4, ..., MN-2AMN, and also of triangles M1AM4, M2AM5, ..., MN-3AMN, and so on.

Equal incircles theorem, the case of four layers

I do not know of an elegant proof of that theorem. In [Wells, p. 67] it appears without a proof. There's no reference either.

The problem has been also discussed by R. Honsberger [Delights, section 17], where he mistakenly claims that the equality of the incircles only extends on the "triangles formed by sets of 2n consecutive triangles in the fan". The solution, nonetheless, works for a more general statement. Honsberger found this to be #2.2.5 in the Sangaku collection by H. Fukagawa and D. Pedoe. In fact problem #2.2.5 shows only two circles and the question is to find the length of the common tangent from the apex A in case the two circles are equal. In this form the problem appears on a surviving 1897 tablet from the Chiba prefecture. The answer to this problem can be found to be

AM2 = s(s - a),

where a is the base and s is the semiperimeter of the triangle.

However, the theorem is a consequence (and also a generalization) of a theorem published in 1986 by H. Demir, which, as was shown by J. B. Tabov, admits if not a more elegant proof, then quite an elegant generalization:

Assume n > 4, and the inradii of the "first level" triangles are equal in pairs: the inradius of ΔMiAMi+1 is equal to that of ΔMi+2AMi+3, i = 1, 2, ..., n-3. Then the incircles of the "second level" triangles MiAMi+2 are all equal.

(There is another, simple proof of the general statement.)


  1. H. Fukagawa, D. Pedoe, Japanese Temple Geometry Problems, The Charles Babbage Research Center, Winnipeg, 1989
  2. R. Honsberger, Mathematical Delights, MAA, 2004
  3. D. Wells, Curious and Interesting Geometry, Penguin Books, 1991


  1. Sangaku: Reflections on the Phenomenon
  2. Critique of My View and a Response
  3. 1 + 27 = 12 + 16 Sangaku
  4. 3-4-5 Triangle by a Kid
  5. 7 = 2 + 5 Sangaku
  6. A 49th Degree Challenge
  7. A Geometric Mean Sangaku
  8. A Hard but Important Sangaku
  9. A Restored Sangaku Problem
  10. A Sangaku: Two Unrelated Circles
  11. A Sangaku by a Teen
  12. A Sangaku Follow-Up on an Archimedes' Lemma
  13. A Sangaku with an Egyptian Attachment
  14. A Sangaku with Many Circles and Some
  15. A Sushi Morsel
  16. An Old Japanese Theorem
  17. Archimedes Twins in the Edo Period
  18. Arithmetic Mean Sangaku
  19. Bottema Shatters Japan's Seclusion
  20. Chain of Circles on a Chord
  21. Circles and Semicircles in Rectangle
  22. Circles in a Circular Segment
  23. Circles Lined on the Legs of a Right Triangle
  24. Equal Incircles Theorem
  25. Equilateral Triangle, Straight Line and Tangent Circles
  26. Equilateral Triangles and Incircles in a Square
  27. Five Incircles in a Square
  28. Four Hinged Squares
  29. Four Incircles in Equilateral Triangle
  30. Gion Shrine Problem
  31. Harmonic Mean Sangaku
  32. Heron's Problem
  33. In the Wasan Spirit
  34. Incenters in Cyclic Quadrilateral
  35. Japanese Art and Mathematics
  36. Malfatti's Problem
  37. Maximal Properties of the Pythagorean Relation
  38. Neuberg Sangaku
  39. Out of Pentagon Sangaku
  40. Peacock Tail Sangaku
  41. Pentagon Proportions Sangaku
  42. Proportions in Square
  43. Pythagoras and Vecten Break Japan's Isolation
  44. Radius of a Circle by Paper Folding
  45. Review of Sacred Mathematics
  46. Sangaku à la V. Thebault
  47. Sangaku and The Egyptian Triangle
  48. Sangaku in a Square
  49. Sangaku Iterations, Is it Wasan?
  50. Sangaku with 8 Circles
  51. Sangaku with Angle between a Tangent and a Chord
  52. Sangaku with Quadratic Optimization
  53. Sangaku with Three Mixtilinear Circles
  54. Sangaku with Versines
  55. Sangakus with a Mixtilinear Circle
  56. Sequences of Touching Circles
  57. Square and Circle in a Gothic Cupola
  58. Steiner's Sangaku
  59. Tangent Circles and an Isosceles Triangle
  60. The Squinting Eyes Theorem
  61. Three Incircles In a Right Triangle
  62. Three Squares and Two Ellipses
  63. Three Tangent Circles Sangaku
  64. Triangles, Squares and Areas from Temple Geometry
  65. Two Arbelos, Two Chains
  66. Two Circles in an Angle
  67. Two Sangaku with Equal Incircles
  68. Another Sangaku in Square
  69. Sangaku via Peru
  70. FJG Capitan's Sangaku

|Activities| |Contact| |Front page| |Contents| |Geometry| |Eye opener|

Copyright © 1996-2018 Alexander Bogomolny