Circles Lined on the Legs of a Right Triangle: What Is This About?
A Mathematical Droodle
What if applet does not run? |
|Activities| |Contact| |Front page| |Contents| |Geometry|
Copyright © 1996-2018 Alexander Bogomolny
The applet purports to suggest an extension of the following sangaku [Temple Geometry, p. 36]:
ABC is a right-angled triangle at C, and 8 circles of the same radius r lie within the triangle and have various contacts. O1(r) touches BC and AB. O2(r) touches BC and O1(r), O3(r) touches BC and O2(r), O4(r) touches BC and O3(r), and O5(r) touches both BC and AC and also O4(r). O6(r) touches AC and O5(r), O7(r) touches AC and O6(r), and finally O8(r) touches AC and AB and O7(r). Show that the radius of the incircle of triangle ABC is equal to 3r. |
(The problem appears on a surviving 1892 tablet in the Hyogo prefecture. )
Draw a line parallel to the b = AC side of the triangle through the upper most point of tangency of the circles. We get two similar right triangles with legs a and (a - 6r) and inradius, say, R and r. Which gives a proportion
(1) | r/R = (a - 6r) / a = 1 - 6r/a. |
For a triangle similarly obtained in the A corner we have
r/R = (b - 8r) / b = 1 - 8r/b. |
Comparing the two expressions we see that
8a = 6b or 4a = 3b. |
If, for example, a = 3 then b = 4 and the hypotenuse equals 5 giving a 3-4-5 triangle. The inradius can be found from
R = (a + b - c)/2, |
or, in this case, R = (3 + 4 - 5)/2 = 1. On the other hand, from say (1),
r = aR / (a + 6R), |
so that r = 1/3 and, indeed, R = 3r, as required.
As the applet shows (and calculations are entirely generic), any Pythagorean triple
References
H. Fukagawa, D. Pedoe, Japanese Temple Geometry Problems, The Charles Babbage Research Center, Winnipeg, 1989
Write to:
Charles Babbage Research Center
P.O. Box 272, St. Norbert Postal Station
Winnipeg, MB
Canada R3V 1L6
Sangaku
- Sangaku: Reflections on the Phenomenon
- Critique of My View and a Response
- 1 + 27 = 12 + 16 Sangaku
- 3-4-5 Triangle by a Kid
- 7 = 2 + 5 Sangaku
- A 49th Degree Challenge
- A Geometric Mean Sangaku
- A Hard but Important Sangaku
- A Restored Sangaku Problem
- A Sangaku: Two Unrelated Circles
- A Sangaku by a Teen
- A Sangaku Follow-Up on an Archimedes' Lemma
- A Sangaku with an Egyptian Attachment
- A Sangaku with Many Circles and Some
- A Sushi Morsel
- An Old Japanese Theorem
- Archimedes Twins in the Edo Period
- Arithmetic Mean Sangaku
- Bottema Shatters Japan's Seclusion
- Chain of Circles on a Chord
- Circles and Semicircles in Rectangle
- Circles in a Circular Segment
- Circles Lined on the Legs of a Right Triangle
- Equal Incircles Theorem
- Equilateral Triangle, Straight Line and Tangent Circles
- Equilateral Triangles and Incircles in a Square
- Five Incircles in a Square
- Four Hinged Squares
- Four Incircles in Equilateral Triangle
- Gion Shrine Problem
- Harmonic Mean Sangaku
- Heron's Problem
- In the Wasan Spirit
- Incenters in Cyclic Quadrilateral
- Japanese Art and Mathematics
- Malfatti's Problem
- Maximal Properties of the Pythagorean Relation
- Neuberg Sangaku
- Out of Pentagon Sangaku
- Peacock Tail Sangaku
- Pentagon Proportions Sangaku
- Proportions in Square
- Pythagoras and Vecten Break Japan's Isolation
- Radius of a Circle by Paper Folding
- Review of Sacred Mathematics
- Sangaku à la V. Thebault
- Sangaku and The Egyptian Triangle
- Sangaku in a Square
- Sangaku Iterations, Is it Wasan?
- Sangaku with 8 Circles
- Sangaku with Angle between a Tangent and a Chord
- Sangaku with Quadratic Optimization
- Sangaku with Three Mixtilinear Circles
- Sangaku with Versines
- Sangakus with a Mixtilinear Circle
- Sequences of Touching Circles
- Square and Circle in a Gothic Cupola
- Steiner's Sangaku
- Tangent Circles and an Isosceles Triangle
- The Squinting Eyes Theorem
- Three Incircles In a Right Triangle
- Three Squares and Two Ellipses
- Three Tangent Circles Sangaku
- Triangles, Squares and Areas from Temple Geometry
- Two Arbelos, Two Chains
- Two Circles in an Angle
- Two Sangaku with Equal Incircles
- Another Sangaku in Square
- Sangaku via Peru
- FJG Capitan's Sangaku
|Activities| |Contact| |Front page| |Contents| |Geometry|
Copyright © 1996-2018 Alexander Bogomolny
72087583