Integral of a Piece-wise Function
Source
Dorin Marghidanu has kindly posted at the CutTheKnotMath facebook page the following problem:
Solution 1
We have, $x\cdot [x]\cdot \{x\}=x\cdot [x]\cdot (x-[x])=[x]\cdot x^2-[x]^2\cdot x.\qquad$ Hence,
$\displaystyle\begin{align} I_n &= \int_{1}^{n}x\cdot [x]\cdot \{x\}dx\\ &=\int_{1}^{n}([x]\cdot x^2-[x]^2\cdot x)dx\\ &=\sum_{k=1}^{n-1}\int_{k}^{k+1}([x]\cdot x^2-[x]^2\cdot x)dx\\ &=\sum_{k=1}^{n-1}\int_{k}^{k+1}(k\cdot x^2-k^2\cdot x)dx\\ &=\sum_{k=1}^{n-1}\left[k\cdot\frac{x^3}{3}-k^2\cdot\frac{x^2}{2}\right]\\ &=\sum_{k=1}^{n-1}\left[k\cdot\frac{(k+1)^3}{3}-k^2\cdot \frac{(k+1)^2}{2}-k\cdot\frac{k^3}{3}+k^2\cdot\frac{k^2}{2}\right]\\ &=\frac{1}{6}\sum_{k=1}^{n-1}k\cdot (3k+2)\\ &=\frac{1}{6}\cdot\left[3\cdot\frac{(n-1)\cdot n\cdot (2n-1)}{6}+2\cdot\frac{(n-1)\cdot n}{2}\right]\\ &=\frac{(n-1)\cdot n\cdot (2n+1)}{12}. \end{align}$
Solution 2
$\displaystyle\begin{align} \int_1^n x\cdot [x]\cdot \{x\}dx &= \sum_{r=1}^{n-1}\int_{r}^{r+1}x\cdot r\cdot (x-r)dx\\ &=\sum_{r=1}^{n-1}\int_{0}^{1}rx(x+r)dx\\ &=\int_{0}^{1}\left\{\sum_{r=1}^{n-1}(x^2r+xr^2\right\}dx\\ &=\frac{1}{3}\frac{n(n-1)}{2}+\frac{1}{2}\frac{n(n-1)(2n-1)}{6}\\ &=\frac{n(n-1)(2n+1)}{12}. \end{align}$
Acknowledgment
Solution 1 is by Dorin Marghidanu; Solution 2 is by Shafiqur Rahman.
Butterfly Theorem and Variants
- Butterfly theorem
- 2N-Wing Butterfly Theorem
- Better Butterfly Theorem
- Butterflies in Ellipse
- Butterflies in Hyperbola
- Butterflies in Quadrilaterals and Elsewhere
- Pinning Butterfly on Radical Axes
- Shearing Butterflies in Quadrilaterals
- The Plain Butterfly Theorem
- Two Butterflies Theorem
- Two Butterflies Theorem II
- Two Butterflies Theorem III
- Algebraic proof of the theorem of butterflies in quadrilaterals
- William Wallace's Proof of the Butterfly Theorem
- Butterfly theorem, a Projective Proof
- Areal Butterflies
- Butterflies in Similar Co-axial Conics
- Butterfly Trigonometry
- Butterfly in Kite
- Butterfly with Menelaus
- William Wallace's 1803 Statement of the Butterfly Theorem
- Butterfly in Inscriptible Quadrilateral
- Camouflaged Butterfly
- General Butterfly in Pictures
- Butterfly via Ceva
- Butterfly via the Scale Factor of the Wings
- Butterfly by Midline
- Stathis Koutras' Butterfly
- The Lepidoptera of the Circles
- The Lepidoptera of the Quadrilateral
- The Lepidoptera of the Quadrilateral II
- The Lepidoptera of the Triangle
- Two Butterflies Theorem as a Porism of Cyclic Quadrilaterals
- Two Butterfly Theorems by Sidney Kung
- Butterfly in Complex Numbers
|Contact| |Front page| |Contents| |Geometry|
Copyright © 1996-2018 Alexander Bogomolny71930092