Butterflies in Similar Co-axial Conics

Sidney Kung
May 14, 2012

Better butterfly theorem in similar conics

Let there be two co-axial similar conic sections \(C_1\) and \(C_2\). A line crosses them at \(P\), \(P'\) and \(Q\), \(Q'\), \(M\) being a point of \(PQ\) and \(P'Q'.\) Through \(M\), draw two lines \(AA'BB'\) and \(CC'DD'\) and connect \(AD',\) \(A'D,\) \(A'D',\) \(AD,\) \(BC',\) \(B'C,\) \(B'C',\) and \(BC.\) Let \(X,\) \(Z,\) \(U,\) \(V,\) \(Y,\) \(W,\) \(U',\) \(V'\) be the points of intersection of \(PP'Q'Q\) with the eight line segments, respectively. Then

(1) \(\frac{1}{MX} + \frac{1}{MZ} - \frac{1}{MP'} - \frac{1}{MP}= \frac{1}{MY} + \frac{1}{MW} - \frac{1}{MQ'} - \frac{1}{MQ}\).

(For convenience, we use the figure from the Better Butterfly ttheorem, so that in the diagram the two circles represent similar conics.)

For a proof, we apply the lemma from the Better Butterfly theorem page to triangles \(MA'D',\) \(MAD,\) \(MA'D,\) and \(MAD'\):

(2) \(\frac{\text{sin}(\alpha )}{MD'} + \frac{\text{sin}(\beta )}{MA'} = \frac{\text{sin}(\alpha +\beta )}{MU}\)

\(\frac{\text{sin}(\alpha )}{MD} + \frac{\text{sin}(\beta )}{MA} = \frac{\text{sin}(\alpha +\beta )}{MV}\)

\(\frac{\text{sin}(\alpha )}{MD} + \frac{\text{sin}(\beta )}{MA'} = \frac{\text{sin}(\alpha +\beta )}{MZ}\)

\(\frac{\text{sin}(\alpha )}{MD'} + \frac{\text{sin}(\beta )}{MA} = \frac{\text{sin}(\alpha +\beta )}{MX}\).


\( \begin{align} \frac{\text{sin}(\alpha +\beta )}{MU} + \frac{\text{sin}(\alpha +\beta )}{MV} &= \left(\frac{\text{sin}(\alpha )}{MD'} + \frac{\text{sin}(\beta )}{MA'}\right) + \left(\frac{\text{sin}(\alpha )}{MD} + \frac{\text{sin}(\beta )}{MA}\right) \\ &= \left(\frac{\text{sin}(\alpha )}{MD'} + \frac{\text{sin}(\beta )}{MA}\right) + \left(\frac{\text{sin}(\alpha )}{MD} + \frac{\text{sin}(\beta )}{MA'}\right) \\ &= \frac{\text{sin}(\alpha +\beta )}{MX} + \frac{\text{sin}(\alpha +\beta )}{MZ}. \end{align} \)


(3) \(\frac{1}{MU} + \frac{1}{MV} = \frac{1}{MX} + \frac{1}{MZ}\).


(4) \(\frac{1}{MU'} + \frac{1}{MV'} = \frac{1}{MW} + \frac{1}{MY}\).

Now, consider the inner circle as a conic section to which we apply the result of E. J. Atzema:

(5) \(\frac{1}{MU} - \frac{1}{MP'} = \frac{1}{MU'} - \frac{1}{MQ'}\).

Likewise, for the outer circle, we have

(6) \(\frac{1}{MV} - \frac{1}{MP} = \frac{1}{MV'} - \frac{1}{MQ}\).

Adding (5) and (6) and taking into account (3) and( 4), we get (1).

Butterfly Theorem and Variants

  1. Butterfly theorem
  2. 2N-Wing Butterfly Theorem
  3. Better Butterfly Theorem
  4. Butterflies in Ellipse
  5. Butterflies in Hyperbola
  6. Butterflies in Quadrilaterals and Elsewhere
  7. Pinning Butterfly on Radical Axes
  8. Shearing Butterflies in Quadrilaterals
  9. The Plain Butterfly Theorem
  10. Two Butterflies Theorem
  11. Two Butterflies Theorem II
  12. Two Butterflies Theorem III
  13. Algebraic proof of the theorem of butterflies in quadrilaterals
  14. William Wallace's Proof of the Butterfly Theorem
  15. Butterfly theorem, a Projective Proof
  16. Areal Butterflies
  17. Butterflies in Similar Co-axial Conics
  18. Butterfly Trigonometry
  19. Butterfly in Kite
  20. Butterfly with Menelaus
  21. William Wallace's 1803 Statement of the Butterfly Theorem
  22. Butterfly in Inscriptible Quadrilateral
  23. Camouflaged Butterfly
  24. General Butterfly in Pictures
  25. Butterfly via Ceva
  26. Butterfly via the Scale Factor of the Wings
  27. Butterfly by Midline
  28. Stathis Koutras' Butterfly
  29. The Lepidoptera of the Circles
  30. The Lepidoptera of the Quadrilateral
  31. The Lepidoptera of the Quadrilateral II
  32. The Lepidoptera of the Triangle
  33. Two Butterflies Theorem as a Porism of Cyclic Quadrilaterals
  34. Two Butterfly Theorems by Sidney Kung
  35. Butterfly in Complex Numbers

|Contact| |Front page| |Contents| |Geometry|

Copyright © 1996-2018 Alexander Bogomolny