A Quick Proof of $\displaystyle \cos\frac{\pi}{7}\cdot\cos\frac{2\pi}{7}\cdot\cos\frac{3\pi}{7}=\frac{1}{8}$
Problem
Solution 1
Let $ABC$ be an isosceles triangle, $AC=BC,$ with $\displaystyle \angle C=\frac{\pi}{7}.$ Mark point $D$ on $AC$ such that $AB=AD.$ Define, for convenience, $AB=1,$ $BC=x,$ and $BD=y.$ Then also $AD=1$ and $CD=y.$
In $\Delta BCD,$ $\displaystyle \cos C=\cos\frac{\pi}{7}=\frac{x/2}{y}=\frac{x}{2y}.$
In $\Delta ABD,$ $\displaystyle \cos D=\cos\frac{2\pi}{7}=\frac{y/2}{1}=\frac{y}{2}.$
In $\Delta ABC,$ $\displaystyle \cos A=\cos\frac{3\pi}{7}=\frac{1/2}{x}=\frac{1}{2x}.$
We thus have
$\displaystyle \cos\frac{\pi}{7}\cdot\cos\frac{2\pi}{7}\cdot\cos\frac{3\pi}{7}=\frac{x}{2y}\cdot\frac{y}{2x}\cdot\frac{1}{2x}=\frac{1}{8}.$
Solution 2
Let, for convenience, $\displaystyle \alpha=\frac{\pi}{7}.$ Then, using the double argument formulas for sine,
$\displaystyle\begin{align} \cos\alpha\cdot\cos 2\alpha\cdot\cos 3\alpha&=\frac{1}{2\sin\alpha}\sin 2\alpha\cos 2\alpha\cos 3\alpha\\ &=\frac{1}{4\sin\alpha}\sin 4\alpha\cos 3\alpha\\ &=\frac{1}{8\sin\alpha}\left(\sin\alpha+\sin 7\alpha\right)=\frac{1}{8}. \end{align}$
Acknowledgment
This is Quickie 846 proposed and proved (Solution 1) by John P. Hoyt (Mathematics Magazine, Vol. 69, No. 1 (Feb., 1996), p 73).
Trigonometry
- What Is Trigonometry?
- Addition and Subtraction Formulas for Sine and Cosine
- The Law of Cosines (Cosine Rule)
- Cosine of 36 degrees
- Tangent of 22.5o - Proof Wthout Words
- Sine and Cosine of 15 Degrees Angle
- Sine, Cosine, and Ptolemy's Theorem
- arctan(1) + arctan(2) + arctan(3) = π
- Trigonometry by Watching
- arctan(1/2) + arctan(1/3) = arctan(1)
- Morley's Miracle
- Napoleon's Theorem
- A Trigonometric Solution to a Difficult Sangaku Problem
- Trigonometric Form of Complex Numbers
- Derivatives of Sine and Cosine
- ΔABC is right iff sin²A + sin²B + sin²C = 2
- Advanced Identities
- Hunting Right Angles
- Point on Bisector in Right Angle
- Trigonometric Identities with Arctangents
- The Concurrency of the Altitudes in a Triangle - Trigonometric Proof
- Butterfly Trigonometry
- Binet's Formula with Cosines
- Another Face and Proof of a Trigonometric Identity
- cos/sin inequality
- On the Intersection of kx and |sin(x)|
- Cevians And Semicircles
- Double and Half Angle Formulas
- A Nice Trig Formula
- Another Golden Ratio in Semicircle
- Leo Giugiuc's Trigonometric Lemma
- Another Property of Points on Incircle
- Much from Little
- The Law of Cosines and the Law of Sines Are Equivalent
- Wonderful Trigonometry In Equilateral Triangle
- A Trigonometric Observation in Right Triangle
- A Quick Proof of cos(pi/7)cos(2.pi/7)cos(3.pi/7)=1/8
|Contact| |Front page| |Contents| |Geometry|
Copyright © 1996-2018 Alexander Bogomolny71876502