A Trigonometric Observation in Right Triangle
Problem
Solution
Consider a right triangle with the side lengths $a, $ $b,$ $c:$
We have:
$\displaystyle\begin{align} \pi&=\arctan\frac{r}{r}+\arctan\frac{a-r}{r}+\arctan\frac{b-r}{r}\\ &=1+\arctan\left(\frac{a}{r}-1\right)+\arctan\left(\frac{b}{r}-1\right)\\ &=1+\arctan\left(\frac{a+b+c}{b}-1\right)+\arctan\left(\frac{a+b+c}{a}-1\right)\;\;\left(\text{for } r=\frac{ab}{a+b+c}\right)\\ &=1+\arctan\frac{a+c}{b}+\arctan\frac{a+c}{a}. \end{align}$
Hence,
$\displaystyle \arctan\left(\frac{b+c}{a}\right)+\arctan\left(\frac{a+c}{b}\right)=\frac{3\pi}{4}.$
On the other hand, it's known that $\displaystyle r=\frac{a+b-c}{2}.$ Thus $\displaystyle a-r=\frac{a-b+c}{2}$ and $\displaystyle b-r=\frac{b-a+c}{2}.$ We conclude that
$\displaystyle\begin{align} \pi&=\arctan\frac{r}{r}+\arctan\frac{a-r}{r}+\arctan\frac{b-r}{r}\\ &=1+\arctan\frac{a-b+c}{a+b-c}+\arctan\frac{b-a+c}{a+b-c}. \end{align}$
From which
$\displaystyle \arctan\left(\frac{a-b+c}{a+b-c}\right)+\arctan\left(\frac{b-a+c}{a+b-c}\right)=\frac{3\pi}{4}.$
Algebraic view
More generally, assume $ab,bc,ca\gt 0.$ Since, for $x,y\gt 0,$ $0\lt\arctan x+\arctan y\lt\pi,$
$\displaystyle\begin{align}\tan\left(\arctan\left(\frac{a+c}{b}\right)+\arctan\left(\frac{b+c}{a}\right)\right)&=\frac{\displaystyle \frac{a+c}{b}+\frac{b+c}{a}}{\displaystyle 1-\frac{a+c}{b}\cdot\frac{b+c}{a}}\\ &=-1, \end{align}$
because of $a^2+b^2=c^2.$
We deduce thus that $\displaystyle \frac{\pi}{2}\lt\tan\left(\arctan\left(\frac{a+c}{b}\right)+\arctan\left(\frac{b+c}{a}\right)\right)\lt\pi$ and, since tangent is an injective function on $\displaystyle \left(\frac{\pi}{2},\pi\right),$ then
$\displaystyle \tan\left(\arctan\left(\frac{a+c}{b}\right)+\arctan\left(\frac{b+c}{a}\right)\right)=\tan\frac{3\pi}{4},$
and the conclusion follows.
Another geometric view
$\angle A_1OB_1=\angle A_2OB_2=\alpha;$ $\angle B_1A_1O=\angle B_2A_2O=90^{\circ}-\alpha.$
In $\Delta A_1OA_2,$ by construction, $A_1O=A_20,$ $\angle A_1OA_2=180^{\circ}-\alpha,$ implying
$\displaystyle \angle OA_1A_2=\angle OA_2A_1=\frac{180^{\circ}-(180^{\circ}-\alpha)}{2}=\frac{\alpha}{2}=\arctan\frac{b+c}{a}.$
Similarly, $\displaystyle \arctan\frac{a+c}{b}=90^{\circ}-\frac{\beta}{2}.$ In conclusion,
$\displaystyle \begin{align} \arctan\frac{b+c}{a}+\arctan\frac{a+c}{b}&=90^{\circ}-\frac{\alpha}{2}+90^{\circ}-\frac{\beta}{2}\\ &=180^{\circ}-\frac{\alpha+\beta}{2}=180^{\circ}-45^{\circ}=135^{\circ}\\ &=\frac{3\pi}{4}. \end{align}$
Acknowledgment
John Molokach came up with the first formula after watching Trigonometry by Watching. After he informed me of his discovery, in an attempt to prove it, I stumbled on the second expression. Leo Giugiuc gave another (algebraic) proof after observing that the three numbers may as well be negative. Artyom Sedykh gave another purely geometric derivation.
Trigonometry
- What Is Trigonometry?
- Addition and Subtraction Formulas for Sine and Cosine
- The Law of Cosines (Cosine Rule)
- Cosine of 36 degrees
- Tangent of 22.5o - Proof Wthout Words
- Sine and Cosine of 15 Degrees Angle
- Sine, Cosine, and Ptolemy's Theorem
- arctan(1) + arctan(2) + arctan(3) = π
- Trigonometry by Watching
- arctan(1/2) + arctan(1/3) = arctan(1)
- Morley's Miracle
- Napoleon's Theorem
- A Trigonometric Solution to a Difficult Sangaku Problem
- Trigonometric Form of Complex Numbers
- Derivatives of Sine and Cosine
- ΔABC is right iff sin²A + sin²B + sin²C = 2
- Advanced Identities
- Hunting Right Angles
- Point on Bisector in Right Angle
- Trigonometric Identities with Arctangents
- The Concurrency of the Altitudes in a Triangle - Trigonometric Proof
- Butterfly Trigonometry
- Binet's Formula with Cosines
- Another Face and Proof of a Trigonometric Identity
- cos/sin inequality
- On the Intersection of kx and |sin(x)|
- Cevians And Semicircles
- Double and Half Angle Formulas
- A Nice Trig Formula
- Another Golden Ratio in Semicircle
- Leo Giugiuc's Trigonometric Lemma
- Another Property of Points on Incircle
- Much from Little
- The Law of Cosines and the Law of Sines Are Equivalent
- Wonderful Trigonometry In Equilateral Triangle
- A Trigonometric Observation in Right Triangle
- A Quick Proof of cos(pi/7)cos(2.pi/7)cos(3.pi/7)=1/8
|Activities| |Contact| |Front page| |Contents| |Geometry|
Copyright © 1996-2018 Alexander Bogomolny
71950278