Golden Ratio in a Chain of Polygons, So to Speak

Source

The following is another invention of Elliot McGucken.

Consider three regular polygons with $3,\;$ $4,\;$ and $5\;$ sides wherein all the polygons have sides of equal length throughout, as illustrated below.

Golden Ratio With three polygons, source

Then $\displaystyle\frac{AI}{IH}=\varphi,\;$ the Golden Ratio.

Proof

I find it convenient to turn the diagram a little as to make the axis of symmetry more pronounced:

Golden Ratio in a Chain of Polygons, So to Speak, problem

Fighting the surge to apply the power of Analytic Geometry, let's have a closer look at what has to be shown. Introduce new notations as below

Golden Ratio in a Chain of Polygons, So to Speak, solution

What needs to be shown is $\displaystyle\frac{a}{b}=\varphi.\;$ However, from triangles $AIK\;$ and $AHQ,\;$ $\displaystyle\frac{a+b}{a}=\frac{h_b}{h_a}=\varphi\;$ as the classical ratio of a diagonal and a side in a regular pentagon.

It follows that $\displaystyle\frac{a}{b}=\frac{1}{\varphi-1}=\varphi.$

Remark

It is interesting to observe that the presence of a triangle and a square, however visually and intellectually appealing, is much less relevant to the appearance of the Golden Ratio than that of the pentagon. Indeed, for any position of $A\;$ on the axis of symmetry of the pentagon, the ratio will be the same, provided point $I\;$ on $AH\;$ is at the same distance from the axis as the vertex $E:$

Golden Ratio in a Chain of Polygons, So to Speak, extra

To illustrate that point and separate of what's important from what is not, Tran Quang Hung came up with the following construction: in a chain of a regular hexagon, a square, and a regular pentagon,

middle point in a Chain of Polygons

$AB=BC,\;$ and the reason is immediately clear from the following diagram by the same reasoning as above.

middle point in a Chain of Polygons, solution

Tran Quang Hung has also observed that the Golden Ratio is cut off by a perpendicular bisector in a combination of a square and a regular pentagon:

Bishop's theorem for the Golden Ratio

The assertion was christened "Bishop's theorem" by Gae Spes. It is clear that a rectangle can be used instead of a square.

 

Golden Ratio

  1. Golden Ratio in Geometry
  2. Golden Ratio in Regular Pentagon
  3. Golden Ratio in an Irregular Pentagon
  4. Golden Ratio in a Irregular Pentagon II
  5. Inflection Points of Fourth Degree Polynomials
  6. Wythoff's Nim
  7. Inscribing a regular pentagon in a circle - and proving it
  8. Cosine of 36 degrees
  9. Continued Fractions
  10. Golden Window
  11. Golden Ratio and the Egyptian Triangle
  12. Golden Ratio by Compass Only
  13. Golden Ratio with a Rusty Compass
  14. From Equilateral Triangle and Square to Golden Ratio
  15. Golden Ratio and Midpoints
  16. Golden Section in Two Equilateral Triangles
  17. Golden Section in Two Equilateral Triangles, II
  18. Golden Ratio is Irrational
  19. Triangles with Sides in Geometric Progression
  20. Golden Ratio in Hexagon
  21. Golden Ratio in Equilateral Triangles
  22. Golden Ratio in Square
  23. Golden Ratio via van Obel's Theorem
  24. Golden Ratio in Circle - in Droves
  25. From 3 to Golden Ratio in Semicircle
  26. Another Golden Ratio in Semicircle
  27. Golden Ratio in Two Squares
  28. Golden Ratio in Two Equilateral Triangles
  29. Golden Ratio As a Mathematical Morsel
  30. Golden Ratio in Inscribed Equilateral Triangles
  31. Golden Ratio in a Rhombus
  32. Golden Ratio in Five Steps
  33. Between a Cross and a Square
  34. Four Golden Circles
  35. Golden Ratio in Mixtilinear Circles
  36. Golden Ratio With Two Equal Circles And a Line
  37. Golden Ratio in a Chain of Polygons, So to Speak
  38. Golden Ratio With Two Unequal Circles And a Line
  39. Golden Ratio In a 3x3 Square
  40. Golden Ratio In a 3x3 Square II
  41. Golden Ratio In Three Tangent Circles
  42. Golden Ratio In Right Isosceles Triangle
  43. Golden Ratio Poster
  44. Golden Ratio Next to the Poster
  45. Golden Ratio In Rectangles
  46. Golden Ratio In a 2x2 Square: Without And Within
  47. Golden Ratio With Two Unequal Circles And a Line II
  48. Golden Ratio in Equilateral and Right Isosceles Triangles
  49. Golden Ratio in a Butterfly Astride an Equilateral Triangle
  50. The Golden Pentacross
  51. 5-Step Construction of the Golden Ratio, One of Many
  52. Golden Ratio in 5-gon and 6-gon
  53. Golden Ratio in an Isosceles Trapezoid with a 60 degrees Angle
  54. Golden Ratio in Pentagon And Two Squares
  55. Golden Ratio in Pentagon And Three Triangles
  56. Golden Ratio in a Mutually Beneficial Relationship
  57. Star, Six Pentagons and Golden Ratio
  58. Rotating Square in Search of the Golden Ratio
  59. Cultivating Regular Pentagons
  60. Golden Ratio in an Isosceles Trapezoid with a 60 degrees Angle II
  61. More of Gloden Ratio in Equilateral Triangles
  62. Golden Ratio in Three Regular Pentagons
  63. Golden Ratio in Three Regular Pentagons II
  64. Golden Ratio in Wu Xing
  65. Golden Ratio In Three Circles And Common Secant

|Contact| |Front page| |Contents| |Algebra| |Store|

Copyright © 1996-2017 Alexander Bogomolny

 62045986

Search by google: