One Trigonometric Formula and Its Consequences
The formula below that holds for any angles $\alpha,$ $\beta,$ $\gamma$ has a two step proof and great many consequences:
(*)
$\displaystyle\sin\alpha +\sin \beta +\sin \gamma -\sin (\alpha + \beta + \gamma )=4\sin\frac{\alpha +\beta}{2}\sin\frac{\beta +\gamma}{2}\sin\frac{\gamma +\alpha}{2}.$
![]()
|Contact| |Front page| |Contents| |Generalizations| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny
From the Addition formulas for sine and cosine one can easily get important formulas for the sum and difference of two sines or of two cosines:
(1)
$\displaystyle\sin\alpha +\sin \beta = 2\sin\frac{\alpha +\beta}{2}\cos\frac{\alpha -\beta}{2},$
(2)
$\displaystyle\sin\alpha -\sin \beta = 2\sin\frac{\alpha -\beta}{2}\cos\frac{\alpha +\beta}{2},$
(3)
$\displaystyle\cos\alpha +\cos \beta = 2\cos\frac{\alpha +\beta}{2}\cos\frac{\alpha -\beta}{2},$
(4)
$\displaystyle\cos\alpha -\cos \beta = 2\sin\frac{\alpha +\beta}{2}\sin\frac{\beta-\alpha}{2},$
For example, since
$\sin(a \pm b) =\sin (a) \cos (b) \pm \cos (a)\sin (b)$
then
$\sin(a + b) +\sin (a - b) = 2\sin (a) \cos (b).$
Now (1) follows by setting $\alpha = a + b$ and $\beta = a - b$ and solving the system for $a$ and $b:$
$\displaystyle\begin{align} a &= (\alpha + \beta ) / 2,\\ b &= (\alpha - \beta ) / 2. \end{align}$
To prove (*),
(*)
$\displaystyle\sin\alpha +\sin \beta +\sin \gamma -\sin (\alpha + \beta + \gamma )=4\sin\frac{\alpha +\beta}{2}\sin\frac{\beta +\gamma}{2}\sin\frac{\gamma +\alpha}{2}.$
we apply (1) and (2) to the left side and subsequently (4) to the result:
$\displaystyle\begin{align} \sin\alpha &+\sin \beta +\sin \gamma -\sin (\alpha + \beta + \gamma )\\ &=2\sin\frac{\alpha + \beta}{2} \cos\frac{\alpha - \beta}{2} - 2\sin\frac{\alpha + \beta}{2} \cos\frac{\gamma + (\alpha + \beta )}{2}\\ &=2\sin\frac{\alpha + \beta}{2} \left[\cos\frac{\alpha - \beta}{2} - \cos\frac{\gamma + (\alpha + \beta )}{2}\right]\\ &=4\sin\frac{\alpha + \beta}{2}\sin\frac{\beta + \gamma}{2}\sin\frac{\gamma + \alpha}{2}, \end{align}$
as required.
When $\alpha,$ $\beta,$ $\gamma$ are angles of a triangle, i.e., when, in particular, $\alpha + \beta + \gamma = \pi,$ we may observe that, for example,
$\displaystyle\frac{\alpha + \beta}{2} = \frac{\pi}{2} - \frac{\gamma}{2},$
which allows to reduces (*) to
(**)
$\displaystyle\sin\alpha +\sin \beta +\sin \gamma = 4 \cos\frac{\alpha}{2} \cos\frac{\beta}{2} \cos\frac{\gamma}{2},$
because $\displaystyle\sin (\frac{\pi}{2} - x) = \cos (x).$
The latter identity (**) has further consequences. Right now, I'll give a second, more direct proof of (**) [Stanford Problem Book, #47.4]. It's not easier than the above and I do not know if it admits a simpler proof than the more general (*).
Let $\alpha = 2u,$ $\beta = 2v,$ $\gamma = \pi - 2u - 2v.$ Then, using the formula for the double argument $\sin(2x) = 2\sin (x)\cos (x),$ (**) is transformed into
$\begin{align} \sin(2u) +\sin (2v) &= 2[2\cos (u)\cos (v) - \cos (u + v)]\sin(u + v)\\ &= 2[\cos (u)\cos (v) +\sin (u)\sin(v)]\sin(u + v)\\ &= 2\cos (u - v)\sin (u + v) \end{align}$
which is actually (1) and hence true.
Reference
- G. Polya, J. Kilpatrick, The Stanford Mathematics Problem Book, Dover, 2009
 
Trigonometry
- What Is Trigonometry?
 - Addition and Subtraction Formulas for Sine and Cosine
 - The Law of Cosines (Cosine Rule)
 - Cosine of 36 degrees
 - Tangent of 22.5o - Proof Wthout Words
 - Sine and Cosine of 15 Degrees Angle
 - Sine, Cosine, and Ptolemy's Theorem
 - arctan(1) + arctan(2) + arctan(3) = π
 - Trigonometry by Watching
 - arctan(1/2) + arctan(1/3) = arctan(1)
 - Morley's Miracle
 - Napoleon's Theorem
 - A Trigonometric Solution to a Difficult Sangaku Problem
 - Trigonometric Form of Complex Numbers
 - Derivatives of Sine and Cosine
 - ΔABC is right iff sin²A + sin²B + sin²C = 2
 - Advanced Identities
 - Hunting Right Angles
 - Point on Bisector in Right Angle
 - Trigonometric Identities with Arctangents
 - The Concurrency of the Altitudes in a Triangle - Trigonometric Proof
 - Butterfly Trigonometry
 - Binet's Formula with Cosines
 - Another Face and Proof of a Trigonometric Identity
 - cos/sin inequality
 - On the Intersection of kx and |sin(x)|
 - Cevians And Semicircles
 - Double and Half Angle Formulas
 - A Nice Trig Formula
 - Another Golden Ratio in Semicircle
 - Leo Giugiuc's Trigonometric Lemma
 - Another Property of Points on Incircle
 - Much from Little
 - The Law of Cosines and the Law of Sines Are Equivalent
 - Wonderful Trigonometry In Equilateral Triangle
 - A Trigonometric Observation in Right Triangle
 - A Quick Proof of cos(pi/7)cos(2.pi/7)cos(3.pi/7)=1/8
 
![]()
|Contact| |Front page| |Contents| |Generalizations| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny
73361984
