# Golden Ratio In Three Circles And Common Secant

The following construction of the Golden Ratio has appeared in the *Mathematical Gazette*, volume 101,number 551, July 2017, page 303. The construction is by John Molokach.

There are two unit circles $(A)\,$ and $(B),\,$ and circle $\omicron,\,$ tangent to both. The vertical segments $AC\,$ and $BF\,$ are tangent to $(A)\,$ and $(B),\,$ respectively. Both are of length $1.\,$ $CF\,$ crosses $\omicron\,$ in $D\,$ and $E,\,$ as shown.

John proves that $CE=\varphi,\,$ the Golden ratio. Indeed, let $CE=x.\,$ Then, by the Intersecting Secants theorem, $CA^2=CD\times CE,\,$ i.e., $1=(x-1)x\,$ so that $x\,$ is the positive root of the equation $x^2-x-1=0,\,$ which is exactly $\displaystyle \varphi=\frac{1+\sqrt{5}}{2}.\,$ In addition, $\displaystyle CD=\varphi-1=\frac{-1+\sqrt{5}}{2}=\frac{1}{\varphi}.\,$ It follows that, too, $\displaystyle \frac{DE}{CD}=\varphi.$

It must be noted that the construction, obtained independently, embeds into the one by John Arioni.

### Golden Ratio

- Golden Ratio in Geometry
- Golden Ratio in Regular Pentagon
- Golden Ratio in an Irregular Pentagon
- Golden Ratio in a Irregular Pentagon II
- Inflection Points of Fourth Degree Polynomials
- Wythoff's Nim
- Inscribing a regular pentagon in a circle - and proving it
- Cosine of 36 degrees
- Continued Fractions
- Golden Window
- Golden Ratio and the Egyptian Triangle
- Golden Ratio by Compass Only
- Golden Ratio with a Rusty Compass
- From Equilateral Triangle and Square to Golden Ratio
- Golden Ratio and Midpoints
- Golden Section in Two Equilateral Triangles
- Golden Section in Two Equilateral Triangles, II
- Golden Ratio is Irrational
- Triangles with Sides in Geometric Progression
- Golden Ratio in Hexagon
- Golden Ratio in Equilateral Triangles
- Golden Ratio in Square
- Golden Ratio via van Obel's Theorem
- Golden Ratio in Circle - in Droves
- From 3 to Golden Ratio in Semicircle
- Another Golden Ratio in Semicircle
- Golden Ratio in Two Squares
- Golden Ratio in Two Equilateral Triangles
- Golden Ratio As a Mathematical Morsel
- Golden Ratio in Inscribed Equilateral Triangles
- Golden Ratio in a Rhombus
- Golden Ratio in Five Steps
- Between a Cross and a Square
- Four Golden Circles
- Golden Ratio in Mixtilinear Circles
- Golden Ratio With Two Equal Circles And a Line
- Golden Ratio in a Chain of Polygons, So to Speak
- Golden Ratio With Two Unequal Circles And a Line
- Golden Ratio In a 3x3 Square
- Golden Ratio In a 3x3 Square II
- Golden Ratio In Three Tangent Circles
- Golden Ratio In Right Isosceles Triangle
- Golden Ratio Poster
- Golden Ratio Next to the Poster
- Golden Ratio In Rectangles
- Golden Ratio In a 2x2 Square: Without And Within
- Golden Ratio With Two Unequal Circles And a Line II
- Golden Ratio in Equilateral and Right Isosceles Triangles
- Golden Ratio in a Butterfly Astride an Equilateral Triangle
- The Golden Pentacross
- 5-Step Construction of the Golden Ratio, One of Many
- Golden Ratio in 5-gon and 6-gon
- Golden Ratio in an Isosceles Trapezoid with a 60 degrees Angle
- Golden Ratio in Pentagon And Two Squares
- Golden Ratio in Pentagon And Three Triangles
- Golden Ratio in a Mutually Beneficial Relationship
- Star, Six Pentagons and Golden Ratio
- Rotating Square in Search of the Golden Ratio
- Cultivating Regular Pentagons
- Golden Ratio in an Isosceles Trapezoid with a 60 degrees Angle II
- More of Gloden Ratio in Equilateral Triangles
- Golden Ratio in Three Regular Pentagons
- Golden Ratio in Three Regular Pentagons II
- Golden Ratio in Wu Xing
- Golden Ratio In Three Circles And Common Secant
- 3-4-5, Golden Ratio

|Contact| |Front page| |Contents| |Geometry| |Store|

Copyright © 1966-2016 Alexander Bogomolny