Hadamard's Determinant Inequalities and Applications I

Problem

Hadamard's Determinant Inequalities and Applications I

Hadamard's First Theorem

If $A=(a_{ij})\in M_n(\mathbb{R}),$ then

$\displaystyle (\det A)^2\le\prod_{j=1}^n\left(\sum_{i=1}^na_{ij}^2\right).$

(See, e.g., Hadamard's theorem on determinants.)

Problem 1, Solution

Consider a $3\times 3$ matrix $A=\left(\begin{array}{ccc}a&1&1\\1&b&1\\1&1&c\end{array}\right).$ One can verify that $\det A=2-a-b-c+abc.$ Thus, the required inequality is a direct consequence of Hadamard's First Theorem.

Problem 2, Solution

Consider a $4\times 4$ matrix $A=\left(\begin{array}{ccc}1&1&1&1\\1&a&0&0\\1&0&b&0\\1&0&0&c\end{array}\right).$ One can verify that $\det A=abc-a-b-c.$ Thus, the required inequality is a direct consequence of Hadamard's First Theorem.

Acknowledgment

The above is based on an article Application of Hadamard's Theorems to inequalities by Dan Sitaru and Leo Giugiuc that appeared in the Crux Mathematicorum (v 44, n 1, pp 25-27). I am very much indebted to Dan Sitaru for bringing this article to my attention.

 

Related material
Read more...

Linear Algebra Tools for Proving Inequalities

$\;\left(\displaystyle\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2\ge 2\right)$
  • Linear Algebra Tools for Proving Inequalities: Cauchy-Binet Formula $\;\left(\displaystyle\left(\sum_{i=1}^{n}\frac{x_i^2}{a_i}\right)\cdot\left(\sum_{1\le i\lt j\le n}a_ia_j(x_iy_j-x_jy_i)^2\right)\ge \sum_{i=1}^{n}a_iy_i^2\right)$
  • An Inequality from Gazeta Matematica, March 2016 (If $a^2+b^2+c^2=3\,$ then $(a+c)(1+b)\le 4)$
  • An Inequality from Gazeta Matematica, March 2016 II (If $x^2+y^2+z^2+t^2=1\,$ then $\;(x+z)(y+t)\le 4)$
  • An Inequality from Gazeta Matematica, March 2016 III $\;(a^2+b^2+1\ge a+ab+b)$
  • An Inequality from Gazeta Matematica, March 2016 IV (If $a^2+b^2+c^2=1\,$ then $a+ac+b\le 2)$
  • Problem 3980 from Crux Mathematicorum $\;\left(\displaystyle\sum_{cycl}\frac{a+b}{a-b}\prod_{cycl}\frac{a+b}{a-b}\lt\frac{1}{3}\right)$
  • NonSquare Matrix as a Tool for Proving an Inequality $\;\left(2(a + b + c)((a + 2b + 3c) \ge (\sqrt{b(a+b)} + 2\sqrt{c(b+c)} + \sqrt{a(c+a)})^2\right)$
  • An Inequality in Parallelogram of Unit Area $\;\left(a^2+b^2+c^2+d^2+ac+bd\ge\sqrt{3}\right)$
  • An Inequality from a Vietnamese Problem Book $\;\left(\displaystyle \frac{a^3+2}{b+2c}+\frac{b^3+2}{c+2a}+\frac{c^3+2}{a+2b}\ge 3\right)$
  • Hadamard's Determinant Inequalities and Applications II $\left((n + a - 1)(a - 1)^{n-1} \le a^n\right)$
  • Cyclic inequalities in three variables

    |Contact| |Front page| |Contents| |Algebra|

    Copyright © 1996-2018 Alexander Bogomolny

    72106475