A Cyclic Inequality in Three Variables XV
Problem
Solution
Consider function $\displaystyle f:\,(0,\infty)\to \mathbb{R};$ defined as
$\displaystyle\begin{align} f(x)&=\frac{x^2+x^6}{1+x^6}-x=\frac{x^2+x^6-x-x^7}{1+x^6}\\ &=\frac{x^6(1-x)-x(1-x)}{1+x^6}=\frac{x(1-x)(x^5-1)}{x^6+1}\\ &=\frac{-x(x-1)(x^5-1)}{x^6+1}\\ &=\frac{-x(x-1)^2(x^4+x^3+x^2+x+1)}{x^6+1}\\ &\leq 0. \end{align}$
Now,
$\displaystyle\begin{align} f\left(\sqrt{\frac{a}{b}}\right)&=\frac{\displaystyle\frac{a}{b}+\frac{a^3}{b^3}}{\displaystyle 1+\frac{a^3}{b^3}}-\sqrt{\frac{a}{b}}\\ &=\frac{a(a^2+b^2)}{a^3+b^3}-\sqrt{\frac{a}{b}}. \end{align}$
It follows that $\displaystyle f\left(\sqrt{\frac{a}{b}}\right)\le 0\,$ is equivalent to
$\displaystyle\frac{a(a^2+b^2)}{a^3+b^3}-\sqrt{\frac{a}{b}}\le 0,$
i.e., $\displaystyle\frac{a(a^2+b^2)}{a^3+b^3}\le\sqrt{\frac{a}{b}}.$ The required inequality is nothing but
$\displaystyle f\left(\sqrt{\frac{a}{b}}\right)+f\left(\sqrt{\frac{b}{c}}\right)+f\left(\sqrt{\frac{c}{a}}\right)\le 0.$
Challenge
Prove that, for $x,y\gt 0,$
$\displaystyle\frac{1+x^2}{1+x^3}+\frac{1+y^2}{1+y^3}+\frac{xy(1+x^2y^2)}{1+x^3y^3}\le 3.$
Visual support:
and a contour plot:
Acknowledgment
This problem with the solution has been kindly communicated to me by Dan Sitaru. wolframalpha was instrumental in obtaining the 3d plots. N. N. Taleb has kindly supplied enhanced illustration and a printout of Mathemtica's application.
|Contact| |Up| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny72106455