Linear Algebra Tools for Proving Inequalities

The following is a summary of two presentations Leo Giugiuc made in March 2015 at two local conferences (Romania). The essence of the talks was to present elements of linear algebra as a powerful tool for proving inequalities. The solutions to the two problems described below make use of the well-known result from linear algebra:

Lemma

A matrix equation $Ax=0,\;$ with a $n\times n\;$ matrix $A\;$ has a non-trivial solution iff the determinant $|A|=0.$

We apply the lemma to solve

Proof

Consider matrix $\displaystyle A=\left(\begin{array}{rrr}1 & -x & x\\y & 1 & -y\\-z & z & 1\end{array}\right),$ where $\displaystyle x=\frac{a}{b-c},\;$ $\displaystyle y=\frac{b}{c-a},\;$ $\displaystyle z=\frac{c}{a-b}.\;$ By direct verification,

$\displaystyle \left(\begin{array}{rrr}1 & -x & x\\y & 1 & -y\\-z & z & 1\end{array}\right)\left(\begin{array}{c}a\\b\\c\end{array}\right)=\left(\begin{array}{c}0\\0\\0\end{array}\right).$

It follows that $|A|=xy+yz+zx+1=0,\;$ or $xy+yz+zx=-1.$ We have,

\displaystyle\begin{align} f &= \left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2- 2\\ &=x^2+y^2+z^2-2\\ &=x^2+y^2+z^2+2(xy+yz+zx)\\ &=(x+y+z)^2\ge 0. \end{align}

Now, let's reverse the definition and choose $x,y,z\;$ that satisfy $x+y+z=0\;$ and $xy+yz+zx=-1\;$ but, otherwise, arbitrary. The above system then will have a non-trivial solution $\left(\begin{array}{c}a\\b\\c\end{array}\right)\;$ for which the inequality at hand becomes an equality.

Problem 2

Let $a,b,c\;$ be pairwise distinct real numbers. Then

$\displaystyle\left(\frac{a}{a-b}+3\right)^2+\left(\frac{b}{b-c}+3\right)^2+\left(\frac{c}{c-a}+3\right)^2\ge 25.\;$

Proof

Consider matrix $\displaystyle A=\left(\begin{array}{rrr}1-x & x & 0\\0 & 1-y & y\\z & 0 & 1-z\end{array}\right),$ where $\displaystyle x=\frac{a}{a-b},\;$ $\displaystyle y=\frac{b}{b-c},\;$ $\displaystyle z=\frac{c}{c-a}.\;$ By direct verification,

$\displaystyle \left(\begin{array}{rrr}1-x & x & 0\\0 & 1-y & y\\z & 0 & 1-z\end{array}\right)\left(\begin{array}{c}a\\b\\c\end{array}\right)=\left(\begin{array}{c}0\\0\\0\end{array}\right).$

It follows that $|A|=xy + yz + zx - (x + y + z) + 1=0,\;$ or $xy+yz+zx=(x + y + z) - 1.$ Define $s=x+y+z.\;$ Then

\displaystyle\begin{align} f &= \left(\frac{a}{a-b}+3\right)^2+\left(\frac{b}{b-c}+3\right)^2+\left(\frac{c}{c-a}+3\right)^2-25\\ &=(x+3)^2+(y+3)^2+(z+3)^2-25\\ &=x^2+y^2+z^2+6s+2\\ &=s^2-2(xy+yz+zx)+6s+2\\ &=s^2 - 2(s - 1) + 6s + 2\\ &=s^2+4s+4\\ &=(s+2)^2\ge 0. \end{align}

As in Problem 1, the equality is achieved for infinitely many triples $a,b,c.$

Below a few inequalities valid under the same conditions as in the above two problems:

1. $\displaystyle\left(\frac{a}{a-b}\right)^2+\left(\frac{b}{b-c}\right)^2+\left(\frac{c}{c-a}\right)^2\ge 1;$

2. $\displaystyle\left(\frac{a}{a-b}+k\right)^2+\left(\frac{b}{b-c}+k\right)^2+\left(\frac{c}{c-a}+k\right)^2\ge 2k^2+2k+1;$

3. $\displaystyle\left(\frac{a+b}{a-b}\right)^2+\left(\frac{b+c}{b-c}\right)^2+\left(\frac{c+a}{c-a}\right)^2\ge 2;$

4. $\displaystyle\left|\frac{a+b}{a-b}\right|+\left|\frac{b+c}{b-c}\right|+\left|\frac{c+a}{c-a}\right|\ge 2\;$ (Michael Rozenberg, Israel.)

As a side note, concerning the first problem, Inder Jeet Taneja, came up with the factoring:

\displaystyle\begin{align}X&=\left(\frac{a}{b-c}\right)^2+\left(\frac{b}{c-a}\right)^2+\left(\frac{c}{a-b}\right)^2- 2\\ &=\frac{(a^3-a^2b-a^2c-ab^2+3abc-ac^2+b^3-b^2c-bc^2+c^3)^2}{(b-c)^2(c-a)^2(a-b)^2} \end{align}

• Linear Algebra Tools for Proving Inequalities: Cauchy-Binet Formula $\;\left(\displaystyle\left(\sum_{i=1}^{n}\frac{x_i^2}{a_i}\right)\cdot\left(\sum_{1\le i\lt j\le n}a_ia_j(x_iy_j-x_jy_i)^2\right)\ge \sum_{i=1}^{n}a_iy_i^2\right)$
• An Inequality from Gazeta Matematica, March 2016 (If $a^2+b^2+c^2=3\,$ then $(a+c)(1+b)\le 4)$
• An Inequality from Gazeta Matematica, March 2016 II (If $x^2+y^2+z^2+t^2=1\,$ then $\;(x+z)(y+t)\le 4)$
• An Inequality from Gazeta Matematica, March 2016 III $\;(a^2+b^2+1\ge a+ab+b)$
• An Inequality from Gazeta Matematica, March 2016 IV (If $a^2+b^2+c^2=1\,$ then $a+ac+b\le 2)$
• Problem 3980 from Crux Mathematicorum $\;\left(\displaystyle\sum_{cycl}\frac{a+b}{a-b}\prod_{cycl}\frac{a+b}{a-b}\lt\frac{1}{3}\right)$
• NonSquare Matrix as a Tool for Proving an Inequality $\;\left(2(a + b + c)((a + 2b + 3c) \ge (\sqrt{b(a+b)} + 2\sqrt{c(b+c)} + \sqrt{a(c+a)})^2\right)$
• An Inequality in Parallelogram of Unit Area $\;\left(a^2+b^2+c^2+d^2+ac+bd\ge\sqrt{3}\right)$
• An Inequality from a Vietnamese Problem Book $\;\left(\displaystyle \frac{a^3+2}{b+2c}+\frac{b^3+2}{c+2a}+\frac{c^3+2}{a+2b}\ge 3\right)$
• Hadamard's Determinant Inequalities and Applications I $\left((2-a-b-c+abc)^2\le (a^2+2)(b^2+2)(c^2+2)\right)$
• Hadamard's Determinant Inequalities and Applications II $\left((n + a - 1)(a - 1)^{n-1} \le a^n\right)$
•