# An Inequality with Two Pairs of Triplets

### Problem

### Solution 1

Pure algebra

$\displaystyle \begin{align} &(a^2+b^2+c^2)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)+\frac{2(ab+bc+ca)(x+y+z)}{xyz}\\ &\qquad\qquad=\frac{a^2}{x^2}+\frac{b^2}{y^2}+\frac{c^2}{z^2}+\frac{2ab}{xy}+\frac{2bc}{yz}+\frac{2ca}{zx}\\ &\qquad\qquad\qquad\qquad+\frac{a^2}{y^2}+\frac{b^2}{z^2}+\frac{c^2}{x^2}+\frac{2ab}{yz}+\frac{2bc}{zx}+\frac{2ca}{xy}\\ &\qquad\qquad\qquad\qquad+\frac{a^2}{z^2}+\frac{b^2}{x^2}+\frac{c^2}{y^2}+\frac{2ab}{zx}+\frac{2bc}{xy}+\frac{2ca}{yz}\\ &\qquad\qquad=\left(\frac{a}{x}+\frac{b}{y}+\frac{c}{z}\right)^2+\left(\frac{a}{y}+\frac{b}{z}+\frac{c}{x}\right)^2+\left(\frac{a}{z}+\frac{b}{x}+\frac{c}{y}\right)^2\\ &\qquad\qquad\ge 0. \end{align}$

### Solution 2

$xyz \neq 0$ implies the finiteness of $p=1/x$, $q=1/y$, and $r=1/z$. Thus, the inequality can be written as

$(a^2+b^2+c^2)(p^2+q^2+r^2)+2(ab+bc+ca)(pq+qr+rp)\geq 0.$

The inequality is trivially satisfied if $a^2+b^2+c^2=0$ or $p^2+q^2+r^2=0$. Let us consider the case when neither is zero. The inequality is separately homogeneous in $\{a,b,c\}$ and $\{p,q,r\}$. Thus, WLOG, we can assume $a^2+b^2+c^2=1$ and $p^2+q^2+r^2=1$.

Let us find the extrema of $ab+bc+ca$ under the constraint $a^2+b^2+c^2=1$ using Lagrange multipliers. The three resulting equations obtained in addition to the constraint are

$ b+c-2\lambda a = 0 \\ c+a-2\lambda b = 0 \\ a+b-2\lambda c = 0,$

where $\lambda$ is the Lagrange multiplier. Adding the three equations, we have

$ (a+b+c)(1-\lambda)=0.$

Thus, either $a+b+c=0$ or $\lambda=1$.

$\lambda=1$ results in $a=b=c$. The constraint implies $a=b=c=\pm 1/\sqrt{3}$. Thus, $ab+bc+ca=1$ for this case. If $a+b+c=0$,

$\displaystyle ab+bc+ca=\frac{(a+b+c)^2-(a^2+b^2+c^2)}{2}=-\frac{1}{2}.$

The exact same analysis applies to $\{p,q,r\}$.

Thus, the LHS can be written as $1+2uv$ where $u\in[-1/2,1]$ and $v\in[-1/2,1]$. This expression will take minimum value when one of $\{u,v\}$ is most negative (takes value $-1/2$) and the other is most positive (takes value $+1$). Thus the minimum value of the LHS is $1+2(-1/2)(1)=0$.

### Acknowledgment

The problem above was kindly posted to the CutTheKnotMath facebook page by Dan Sitaru, with a solution by Ravi Prakash. Originally, the problem was published by Dan at the Romanian Mathematical Magazine. Solution 2 is by Amit Itagi.

- An Inequality for Grade 8
- An Extension of the AM-GM Inequality
- Schur's Inequality
- Newton's and Maclaurin's Inequalities
- Rearrangement Inequality
- Chebyshev Inequality
- Jensen's Inequality
- Muirhead's Inequality
- Bergström's inequality
- Radon's Inequality and Applications
- Jordan and Kober Inequalities, PWW
- A Mathematical Rabbit out of an Algebraic Hat
- An Inequality With an Infinite Series
- An Inequality: 1/2 * 3/4 * 5/6 * ... * 99/100 less than 1/10
- A Low Bound for 1/2 * 3/4 * 5/6 * ... * (2n-1)/2n
- An Inequality: Easier to prove a subtler inequality
- Inequality with Logarithms
- An inequality: 1 + 1/4 + 1/9 + ... less than 2
- Inequality with Harmonic Differences
- An Inequality by Uncommon Induction
- Hlawka's Inequality
- An Inequality in Determinants
- Application of Cauchy-Schwarz Inequality
- An Inequality from Tibet
- An Inequality with Constraint
- An Inequality from Morocco
- An Inequality for Mixed Means
- An Inequality in Integers
- An Inequality in Integers II
- An Inequality in Integers III
- An Inequality with Exponents
- Exponential Inequalities for Means
- A Simple Inequality in Three Variables
- An Asymmetric Inequality
- Linear Algebra Tools for Proving Inequalities
- An Inequality with a Generic Proof
- A Generalization of an Inequality from a Romanian Olympiad
- Area Inequality in Trapezoid
- Improving an Inequality
- RomanoNorwegian Inequality
- Inequality with Nested Radicals II
- Inequality with Powers And Radicals
- Inequality with Two Minima
- Simple Inequality with Many Faces And Variables
- An Inequality with Determinants
- An Inequality with Determinants II
- An Inequality with Determinants III
- An Inequality with Determinants IV
- An Inequality with Determinants V
- An Inequality with Determinants VI
- An Inequality with Determinants VII
- An Inequality in Reciprocals
- An Inequality in Reciprocals II
- An Inequality in Reciprocals III
- Monthly Problem 11199
- A Problem from the Danubius Contest 2016
- A Problem from the Danubius-XI Contest
- An Inequality with Integrals and Rearrangement
- An Inequality with Cot, Cos, and Sin
- A Trigonometric Inequality from the RMM
- An Inequality with Finite Sums
- Hung Viet's Inequality
- Hung Viet's Inequality II
- Hung Viet's Inequality III
- Inequality by Calculus
- Dorin Marghidanu's Calculus Lemma
- An Area Inequality
- A 4-variable Inequality from the RMM
- An Inequality from RMM with Powers of 2
- A Cycling Inequality with Integrals
- A Cycling Inequality with Integrals II
- An Inequality with Absolute Values
- An Inequality from RMM with a Generic 5
- An Elementary Inequality by Non-elementary Means
- Inequality in Quadrilateral
- Marian Dinca's Refinement of Nesbitt's Inequality
- An Inequality in Cyclic Quadrilateral
- An Inequality in Cyclic Quadrilateral II
- An Inequality in Cyclic Quadrilateral III
- An Inequality in Cyclic Quadrilateral IV
- Inequality with Three Linear Constraints
- Inequality with Three Numbers, Not All Zero
- An Easy Inequality with Three Integrals
- Divide And Conquer in Cyclic Sums
- Wu's Inequality
- A Cyclic Inequality in Three Variables
- Dorin Marghidanu's Inequality in Complex Plane
- Dorin Marghidanu's Inequality in Integer Variables
- Dorin Marghidanu's Inequality in Many Variables
- Dorin Marghidanu's Inequality in Many Variables Plus Two More
- Dorin Marghidanu's Inequality with Radicals
- Dorin Marghidanu's Light Elegance in Four Variables
- Dorin Marghidanu's Spanish Problem
- Two-Sided Inequality - One Provenance
- An Inequality with Factorial
- Wonderful Inequality on Unit Circle
- Quadratic Function for Solving Inequalities
- An Inequality Where One Term Is More Equal Than Others
- An Inequality and Its Modifications
- Complicated Constraint - Simple Inequality
- Distance Inequality
- Two Products: Constraint and Inequality
- The power of substitution II: proving an inequality with three variables
- Algebraic-Geometric Inequality
- One Inequality - Two Domains
- Radicals, Radicals, And More Radicals in an Inequality
- An Inequality in Triangle and In General
- Cyclic Inequality with Square Roots
- Dan Sitaru's Cyclic Inequality In Many Variables
- An Inequality on Circumscribed Quadrilateral
- An Inequality with Fractions
- An Inequality with Complex Numbers of Unit Length
- An Inequality with Complex Numbers of Unit Length II
- Le Khanh Sy's Problem
- An Inequality Not in Triangle
- An Acyclic Inequality in Three Variables
- An Inequality with Areas, Norms, and Complex Numbers
- Darij Grinberg's Inequality In Three Variables
- Small Change Makes Big Difference
- Inequality with Two Variables? Think Again
- A Problem From a Mongolian Olympiad for Grade 11
- Sitaru--Schweitzer Inequality
- An Inequality with Cyclic Sums And Products
- Problem 1 From the 2016 Pan-African Math Olympiad
- An Inequality with Integrals and Radicals
- Twin Inequalities in Four Variables: Twin 1
- Twin Inequalities in Four Variables: Twin 2
- Simple Inequality with a Variety of Solutions
- A Partly Cyclic Inequality in Four Variables
- Dan Sitaru's Inequality by Induction
- An Inequality in Three (Or Is It Two) Variables
- An Inequality in Four Weighted Variables
- An Inequality in Fractions with Absolute Values
- Inequalities with Double And Triple Integrals
- An Old Inequality
- Dan Sitaru's Amazing, Never Ending Inequality
- Leo Giugiuc's Exercise
- Another Inequality with Logarithms, But Not Really
- A Cyclic Inequality of Degree Four
- An Inequality Solved by Changing Appearances
- Distances to Three Points on a Circle
- An Inequality with Powers And Logarithm
- Four Integrals in One Inequality
- Same Integral, Three Intervals
- Dorin Marghidanu's Inequality with Generalization
- Dan Sitaru's Inequality with Three Related Integrals and Derivatives
- An Inequality in Two Or More Variables
- An Inequality in Two Or More Variables II
- A Not Quite Cyclic Inequality
- Dan Sitaru's Inequality: From Three Variables to Many in Two Ways
- An Inequality with Sines But Not in a Triangle
- An Inequality with Angles and Integers
- Sladjan Stankovik's Inequality In Four Variables
- An Inequality with Two Pairs of Triplets
- A Refinement of Turkevich's Inequality
- Dan Sitaru's Exercise with Pi and Ln
- Problem 4165 from Crux Mathematicorum
- Leo Giugiuc's Cyclic Quickie in Four Variables
- Dan Sitaru's Cyclic Inequality in Four Variables
- A Not Quite Cyclic Inequality from Tibet
- Three Variables, Three Constraints, Two Inequalities (Only One to Prove) - by Leo Giugiuc
- An inequality in 2+2 variables from SSMA magazine
- Kunihiko Chikaya's Inequality with Parameter
- Dorin Marghidanu's Permuted Inequality

|Contact| |Front page| |Contents| |Algebra|

Copyright © 1996-2017 Alexander Bogomolny62681670 |