# One Inequality - Two Domains

### Problem 1

### Problem 2

### Solution to Problem 1

We'll start with the obvious $a^2+ab+b^2\ge\displaystyle\frac{3}{4}(a+b)^2,\,$ from which

$\displaystyle\prod_{cycl}(a^2+ab+b^2)\ge\frac{27}{64}[(a+b)(b+c)(c+a)]^2.$

On the other hand, it is easy to verify that

$\displaystyle\frac{(a+b)(b+c)(c+a)}{8}\ge\frac{(a+b+c)(ab+bc+ca)}{9}$

so that

$\displaystyle\frac{81}{64}[(a+b)(b+c)(c+a)]^2\ge (a+b+c)^2(ab+bc+ca)^2.$

Chaining the inequalities gives the desired,

$\displaystyle 3\prod_{cycl}(a^2+ab+b^2)\ge\left(\sum_{cycl}a\right)^2\cdot\left(\sum_{cycl}ab\right)^2.$

### Solution to Problem 2

Note that

$\displaystyle \prod_{cycl}(a^2+ab+b^2)=\left(\prod_{cycl}a\right)^2\left(\prod_{cycl}ab\right)^2-\left(\prod_{cycl}ab\right)^3-abc\left(\prod_{cycl}a\right)^3.$

Hence we need to prove

$2(a+b+c)^2(ab+bc+ca)^2\ge 3(ab+bc+ca)^3+3abc(a+b+c)^3.$

In case $a+b+c=0,\,$ $ab+bc+ca\le 0,\,$ there's nothing to prove. So assume $a+b+c=3,\,$ $ab+bc+ca=3(1-t^2),\,$ $t\ge 0.$

Due to a result by Vo Quoc Ba Can, $\max (abc)=(1-t^2)(1+2t).\,$ Thus, suffice it to show that

$\displaystyle 2(1-t^2)^2\ge (1-t^2)^3+(1-t)^2(1+2t),$

i.e.,

$\displaystyle 2(1+t)^2\ge (1-t)(1+t)^3+1+2t.$

The latter reduces to the obvious $t^2(t^2+2t+2)\ge 0,\,$ thus completing the proof.

### Illustration 1

Contour plot:

### Illustration 2

Region plot:

### Acknowledgment

Both problems have been kindly posted at the CutTheKnotMath facebook page by Leo Giugiuc, along with his solutions. Problem 1 is by Gheorghe Duca; Problem 2 is by Michael Rozenberg.

The illustration 1 is by Gary Davis; Illustration 2 is by Nassim Nicholas Taleb.

- An Inequality for Grade 8
- An Extension of the AM-GM Inequality
- Schur's Inequality
- Newton's and Maclaurin's Inequalities
- Rearrangement Inequality
- Chebyshev Inequality
- Jensen's Inequality
- Muirhead's Inequality
- Bergström's inequality
- Radon's Inequality and Applications
- Jordan and Kober Inequalities, PWW
- A Mathematical Rabbit out of an Algebraic Hat
- An Inequality With an Infinite Series
- An Inequality: 1/2 * 3/4 * 5/6 * ... * 99/100 less than 1/10
- A Low Bound for 1/2 * 3/4 * 5/6 * ... * (2n-1)/2n
- An Inequality: Easier to prove a subtler inequality
- Inequality with Logarithms
- An inequality: 1 + 1/4 + 1/9 + ... less than 2
- Inequality with Harmonic Differences
- An Inequality by Uncommon Induction
- Hlawka's Inequality
- An Inequality in Determinants
- Application of Cauchy-Schwarz Inequality
- An Inequality from Tibet
- An Inequality with Constraint
- An Inequality from Morocco
- An Inequality for Mixed Means
- An Inequality in Integers
- An Inequality in Integers II
- An Inequality in Integers III
- An Inequality with Exponents
- Exponential Inequalities for Means
- A Simple Inequality in Three Variables
- An Asymmetric Inequality
- Linear Algebra Tools for Proving Inequalities
- An Inequality with a Generic Proof
- A Generalization of an Inequality from a Romanian Olympiad
- Area Inequality in Trapezoid
- Improving an Inequality
- RomanoNorwegian Inequality
- Inequality with Nested Radicals II
- Inequality with Powers And Radicals
- Inequality with Two Minima
- Simple Inequality with Many Faces And Variables
- An Inequality with Determinants
- An Inequality with Determinants II
- An Inequality with Determinants III
- An Inequality with Determinants IV
- An Inequality with Determinants V
- An Inequality with Determinants VI
- An Inequality with Determinants VII
- An Inequality in Reciprocals
- An Inequality in Reciprocals II
- An Inequality in Reciprocals III
- Monthly Problem 11199
- A Problem from the Danubius Contest 2016
- A Problem from the Danubius-XI Contest
- An Inequality with Integrals and Rearrangement
- An Inequality with Cot, Cos, and Sin
- A Trigonometric Inequality from the RMM
- An Inequality with Finite Sums
- Hung Viet's Inequality
- Hung Viet's Inequality II
- Hung Viet's Inequality III
- Inequality by Calculus
- Dorin Marghidanu's Calculus Lemma
- An Area Inequality
- A 4-variable Inequality from the RMM
- An Inequality from RMM with Powers of 2
- A Cycling Inequality with Integrals
- A Cycling Inequality with Integrals II
- An Inequality with Absolute Values
- An Inequality from RMM with a Generic 5
- An Elementary Inequality by Non-elementary Means
- Inequality in Quadrilateral
- Marian Dinca's Refinement of Nesbitt's Inequality
- An Inequality in Cyclic Quadrilateral
- An Inequality in Cyclic Quadrilateral II
- An Inequality in Cyclic Quadrilateral III
- An Inequality in Cyclic Quadrilateral IV
- Inequality with Three Linear Constraints
- Inequality with Three Numbers, Not All Zero
- An Easy Inequality with Three Integrals
- Divide And Conquer in Cyclic Sums
- Wu's Inequality
- A Cyclic Inequality in Three Variables
- Dorin Marghidanu's Inequality in Complex Plane
- Dorin Marghidanu's Inequality in Integer Variables
- Dorin Marghidanu's Inequality in Many Variables
- Dorin Marghidanu's Inequality in Many Variables Plus Two More
- Dorin Marghidanu's Inequality with Radicals
- Dorin Marghidanu's Light Elegance in Four Variables
- Dorin Marghidanu's Spanish Problem
- Two-Sided Inequality - One Provenance
- An Inequality with Factorial
- Wonderful Inequality on Unit Circle
- Quadratic Function for Solving Inequalities
- An Inequality Where One Term Is More Equal Than Others
- An Inequality and Its Modifications
- Complicated Constraint - Simple Inequality
- Distance Inequality
- Two Products: Constraint and Inequality
- The power of substitution II: proving an inequality with three variables
- Algebraic-Geometric Inequality
- One Inequality - Two Domains
- Radicals, Radicals, And More Radicals in an Inequality
- An Inequality in Triangle and In General
- Cyclic Inequality with Square Roots
- Dan Sitaru's Cyclic Inequality In Many Variables
- An Inequality on Circumscribed Quadrilateral
- An Inequality with Fractions
- An Inequality with Complex Numbers of Unit Length
- An Inequality with Complex Numbers of Unit Length II
- Le Khanh Sy's Problem
- An Inequality Not in Triangle
- An Acyclic Inequality in Three Variables
- An Inequality with Areas, Norms, and Complex Numbers
- Darij Grinberg's Inequality In Three Variables
- Small Change Makes Big Difference
- Inequality with Two Variables? Think Again
- A Problem From a Mongolian Olympiad for Grade 11
- Sitaru--Schweitzer Inequality
- An Inequality with Cyclic Sums And Products
- Problem 1 From the 2016 Pan-African Math Olympiad
- An Inequality with Integrals and Radicals
- Twin Inequalities in Four Variables: Twin 1
- Twin Inequalities in Four Variables: Twin 2
- Simple Inequality with a Variety of Solutions
- A Partly Cyclic Inequality in Four Variables
- Dan Sitaru's Inequality by Induction
- An Inequality in Three (Or Is It Two) Variables
- An Inequality in Four Weighted Variables
- An Inequality in Fractions with Absolute Values
- Inequalities with Double And Triple Integrals
- An Old Inequality
- Dan Sitaru's Amazing, Never Ending Inequality
- Leo Giugiuc's Exercise
- Another Inequality with Logarithms, But Not Really
- A Cyclic Inequality of Degree Four
- An Inequality Solved by Changing Appearances
- Distances to Three Points on a Circle
- An Inequality with Powers And Logarithm
- Four Integrals in One Inequality
- Same Integral, Three Intervals
- Dorin Marghidanu's Inequality with Generalization
- Dan Sitaru's Inequality with Three Related Integrals and Derivatives
- An Inequality in Two Or More Variables
- An Inequality in Two Or More Variables II
- A Not Quite Cyclic Inequality
- Dan Sitaru's Inequality: From Three Variables to Many in Two Ways
- An Inequality with Sines But Not in a Triangle
- An Inequality with Angles and Integers
- Sladjan Stankovik's Inequality In Four Variables
- An Inequality with Two Pairs of Triplets
- A Refinement of Turkevich's Inequality
- Dan Sitaru's Exercise with Pi and Ln
- Problem 4165 from Crux Mathematicorum
- Leo Giugiuc's Cyclic Quickie in Four Variables
- Dan Sitaru's Cyclic Inequality in Four Variables
- A Not Quite Cyclic Inequality from Tibet
- Three Variables, Three Constraints, Two Inequalities (Only One to Prove) - by Leo Giugiuc
- An inequality in 2+2 variables from SSMA magazine
- Kunihiko Chikaya's Inequality with Parameter

|Contact| |Front page| |Contents| |Algebra|

Copyright © 1996-2017 Alexander Bogomolny62647657 |