## Morley's Miracle: An Unexpected Variant

Subject: | Morley's theorem |
---|---|

Date: | Jul-16-03 |

From: | Larry Hammick |

Hi, Since CTK has such a good account of Morley's theorem, I thought I would point out this little sidelight on it: http://planetmath.org/encyclopedia/CorollaryOfMorleysTheorem.html Larry |

Larry, thank you. I find it indeed amazing and think that F. Morley himself has not foreseen this variant.

One of the vertices of ΔABC, say C, is pushed off to infinity so that the two sides AC and BC and the trisector lines at C become parallel. In this case the angles at A and B are supplementary:

(1) | ∠A + ∠B = 180° |

As will be demonstrated below, in order that the "Morley triangle" be equilateral, the four lines need be equidistant.

I'll follow D. J. Newman's proof, but use J. Conway's notations.

We backtrack, i.e. start with an equilateral triangle PQR of side 1 and errect two triangles, AQR and BPR, with angles a, and 60°, b* and, respectively, b, 60°, and a*. As in the original proof, angle RAB is shown to be A, while angle RBA is shown to be b.

We now draw four parallel lines through the points B, P, Q, A, such that the added angle at vertex A is a and that at B is b. This is possible because of (1). Counting angles around P and Q we immediately get

Now the only thing that remains to be proven is the fact that the four lines are equidistant.

From the Law of Sines in ΔAQR,

AQ = sin(b*)/sin(a).

Therefore, if QT ⊥ AT, then QT = AQ·sin(a). Which gives

QT = PS.

Let QU ⊥ PU. Then QU = sin(b*), too. And all three distances coincide:

QT = PS = QU.

### Morley's Miracle

#### On Morley and his theorem

- Doodling and Miracles
- Morley's Pursuit of Incidence
- Lines, Circles and Beyond
- On Motivation and Understanding
- Of Looking and Seeing

#### Backward proofs

- J.Conway's proof
- D. J. Newman's proof
- B. Bollobás' proof
- G. Zsolt Kiss' proof
- Backward Proof by B. Stonebridge
- Morley's Equilaterals, Spiridon A. Kuruklis' proof
- J. Arioni's Proof of Morley's Theorem

#### Trigonometric proofs

- Bankoff's proof
- B. Bollobás' trigonometric proof
- Proof by R. J. Webster
- A Vector-based Proof of Morley's Trisector Theorem
- L. Giugiuc's Proof of Morley's Theorem
- Dijkstra's Proof of Morley's Theorem

#### Synthetic proofs

- Another proof
- Nikos Dergiades' proof
- M. T. Naraniengar's proof
- An Unexpected Variant
- Proof by B. Stonebridge and B. Millar
- Proof by B. Stonebridge
- Proof by Roger Smyth
- Proof by H. D. Grossman
- Proof by H. Shutrick
- Original Taylor and Marr's Proof of Morley's Theorem
- Taylor and Marr's Proof - R. A. Johnson's Version
- Morley's Theorem: Second Proof by Roger Smyth
- Proof by A. Robson

#### Algebraic proofs

#### Invalid proofs

|Contact| |Front page| |Contents| |Geometry|

Copyright © 1996-2018 Alexander Bogomolny

67260191