Morley's Miracle
B. Bollobas' proof
This proof appears in The Art of Mathematics by B. Bollobás (Cambridge University Press, 2006, p. 127-128) accompanied by a remark that the author was used to offer Morley's theorem in the early 1970s as a problem to his better freshmen in Cambridge, who never found it easy. They were able to find the solution (and also the trigonometric one) after getting some hints.
Let us work backwards. To prove the theorem, it suffices to show that if PQR is an equilateral triangle and we erect on its sides triangles RQA, PQB and QPC as in the diagram then we get a triangle ABC with angles 3α, 3β, 3γ and appropriate trisectors.
Let us reflect P in BR to get R1, and Q in AR to get R2; construct the points P1, P2, Q1 and Q2 similarly as in the diagram. All we need then is that the points R1 and R2 are on AB (and so P1, P2, Q1 and Q2 are also on the appropriate sides). That this so is easily seen by computing some angles. For example,
Let us assume that
∠R1RR2 | = β+ + α+ - γ++ | = β + α - γ | = π/3 - 2γ, |
so ∠RR2R1 = (π - (π/3 - 2γ))/2 = γ+. This implies that point R1 is on the segment AR2. Similarly, R2 is on the segment BR1, and we are done.
If α + β < γ then R1 and R2 are interchanged on AB; to see that, we note that
Morley's Miracle
On Morley and his theorem
- Doodling and Miracles
- Morley's Pursuit of Incidence
- Lines, Circles and Beyond
- On Motivation and Understanding
- Of Looking and Seeing
Backward proofs
- J.Conway's proof
- D. J. Newman's proof
- B. Bollobás' proof
- G. Zsolt Kiss' proof
- Backward Proof by B. Stonebridge
- Morley's Equilaterals, Spiridon A. Kuruklis' proof
- J. Arioni's Proof of Morley's Theorem
Trigonometric proofs
- Bankoff's proof
- B. Bollobás' trigonometric proof
- Proof by R. J. Webster
- A Vector-based Proof of Morley's Trisector Theorem
- L. Giugiuc's Proof of Morley's Theorem
- Dijkstra's Proof of Morley's Theorem
Synthetic proofs
- Another proof
- Nikos Dergiades' proof
- M. T. Naraniengar's proof
- An Unexpected Variant
- Proof by B. Stonebridge and B. Millar
- Proof by B. Stonebridge
- Proof by Roger Smyth
- Proof by H. D. Grossman
- Proof by H. Shutrick
- Original Taylor and Marr's Proof of Morley's Theorem
- Taylor and Marr's Proof - R. A. Johnson's Version
- Morley's Theorem: Second Proof by Roger Smyth
- Proof by A. Robson
Algebraic proofs
Invalid proofs
|Contact| |Front page| |Contents| |Geometry|
Copyright © 1996-2018 Alexander Bogomolny
71871253