Angle Bisectors in Ellipse II

Let A and B be two points on an ellipse with foci E and F. The tangents to the ellipse at A and B meet in S. Prove that ∠ASE = ∠BSF. In words, at the point of intersection, the two tangents to an ellipse are equally inclined to the lines joining that point with the foci of the ellipse.


This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at http://www.java.com/en/download/index.jsp, download and install Java VM and enjoy the applet.


Buy this applet
What if applet does not run?

Proof

Conic Sections > Ellipse

|Activities| |Contact| |Front page| |Contents| |Geometry| |Store|

Copyright © 1996-2015Alexander Bogomolny

Let A and B be two points on an ellipse with foci E and F. The tangents to the ellipse at A and B meet in S. Prove that ∠ASE = ∠BSF.

Proof

To see why this is so, draw an ellipse through S confocal to the given one. This remids of the configuration which showed the ellipse as an envelope of a family of straight lines.


This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at http://www.java.com/en/download/index.jsp, download and install Java VM and enjoy the applet.


Buy this applet
What if applet does not run?

So we now have two confocal ellipses: ellipse1 (the original one) and ellipse2 (passing through S.) The configuration admits the following interpretation. Draw a tangent to ellipse1 at A till it hits ellipse2 in S. Reflect it at S and continue to the next intersection with ellipse2, and so on. All so constructed lines will touch an ellipse confocal with ellipse2 which is bound to be ellipse1 since the latter, by the construction, is already tangent to the first line AS. It follows that the second line in the chain is necessarily BS, implying that AS and BS are equally inclined to the tangent to ellipse2 at S. But so are ES and FS, and we are done.

Conic Sections > Ellipse

Related material
Read more...

Angle Bisector

  • Angle Bisector
  • Angle Bisector Theorem
  • All about angle bisectors
  • Angle Bisectors in Ellipse
  • Angle Bisector in Equilateral Trapezoid
  • Angle Bisector in Rectangle
  • Property of Angle Bisectors
  • Property of Angle Bisectors II
  • A Property of Angle Bisectors III
  • External Angle Bisectors
  • Projections on Internal and External Angle Bisectors
  • Angle Bisectors On Circumcircle
  • Angle Bisectors in a Quadrilateral - Cyclic and Otherwise
  • Problem: Angle Bisectors in a Quadrilateral
  • Triangle From Angle Bisectors
  • Property of Internal Angle Bisector - Hubert Shutrick's PWW
  • Angle Bisectors Cross Circumcircle
  • |Activities| |Contact| |Front page| |Contents| |Geometry| |Store|

    Copyright © 1996-2015Alexander Bogomolny

     49552218

    Google
    Web CTK