## Pascal in Ellipse

Pascal's theorem which B. Pascal has famously discovered at the age of 16 states that *if a hexagon is inscribed in a conic, then the three points at which the pairs of opposite sides meet are collinear.* Elsewhere there is an illustration of the Pascal's theorem on a circle, a proof based on Chasles' theorem and a direct proof in homogeneous coordinates. Being projective in nature, Pascal's theorem is valid for other conic sections, like *hyperbolas* and *parabolas*. The universality of the diagram led to the introduction of the term *Pascal's Mystic Hexagram* that stuck around.

### Conic Sections > Ellipse

- What Is Ellipse?

- Analog device simulation for drawing ellipses
- Angle Bisectors in Ellipse
- Angle Bisectors in Ellipse II
- Between Major and Minor Circles
- Brianchon in Ellipse
- Butterflies in Ellipse
- Concyclic Points of Two Ellipses with Orthogonal Axes
- Conic in Hexagon
- Conjugate Diameters in Ellipse
- Dynamic construction of ellipse and other curves
- Ellipse Between Two Circles
- Ellipse in Arbelos
- Ellipse Touching Sides of Triangle at Midpoints
- Euclidean Construction of Center of Ellipse
- Euclidean Construction of Tangent to Ellipse
- Focal Definition of Ellipse
- Focus and Directrix of Ellipse
- From Foci to a Tangent in Ellipse
- Gergonne in Ellipse
- Pascal in Ellipse
- La Hire's Theorem in Ellipse
- Maximum Perimeter Property of the Incircle
- Optical Property of Ellipse
- Parallel Chords in Ellipse
- Poncelet Porism in Ellipses
- Reflections in Ellipse
- Three Squares and Two Ellipses
- Three Tangents, Three Chords in Ellipse
- Van Schooten's Locus Problem
- Two Circles, Ellipse, and Parallel Lines

### Pascal and Brianchon Theorems

- Pascal's Theorem
- Pascal in Ellipse
- Pascal's Theorem, Homogeneous Coordinates
- Projective Proof of Pascal's Theorem
- Pascal Lines: Steiner and Kirkman Theorems
- Brianchon's theorem
- Brianchon in Ellipse
- The Mirror Property of Altitudes via Pascal's Hexagram
- Pappus' Theorem
- Pencils of Cubics
- Three Tangents, Three Chords in Ellipse
- MacLaurin's Construction of Conics
- Pascal in a Cyclic Quadrilateral
- Parallel Chords
- Parallel Chords in Ellipse
- Construction of Conics from Pascal's Theorem
- Pascal: Necessary and Sufficient
- Diameters and Chords
- Chasing Angles in Pascal's Hexagon
- Two Triangles Inscribed in a Conic
- Two Triangles Inscribed in a Conic - with Solution
- Two Pascals Merge into One
- Surprise: Right Angle in Circle

|Activities| |Contact| |Front page| |Contents| |Geometry|

Copyright © 1996-2018 Alexander Bogomolny

66164868