60° Angle And Importance of Being The Other End of a Diameter

What Is This About?

Created with GeoGebra

Source

60° Angle And Importance of Being The Other End of a Diameter, source

Problem

60° Angle And Importance of Being The Other End of a Diameter, problem

Solution 1

Observe that $AD\,$ is a diameter of $(ABC).\,$ It follows that $\angle ACD=\angle ABD=90^{\circ}.\,$ Also, $\angle CDB=120^{\circ}.\,$

$\mathbf{MN=BM+CN\,\Rightarrow\,\angle MDN=60^{\circ}}$

Let $G\in MN\,$ be such that $DG\perp MN.\,$ Consider circles $(M)=C(M,B)\,$ and $(N)=C(N,C).\,$

60° Angle And Importance of Being The Other End of a Diameter, solution

To satisfy $MN=BM+CN,\,$ the two circles need to pass through $G\,$ where they touch each other, such that $BM=GM\,$ and $CN=GN.\,$ Note that the four triangles $BDM,\,$ $GDM,\,$ $GDN,\,$ and $CDN\,$ are right.

$BM=GM\,$ and $CN=GN\,$ is equivalent to
$\qquad\qquad\Delta BMD=\Delta GMD\,$ and $\Delta CND=\Delta GND$
which is equivalent to
$\qquad\qquad\angle BDM=\angle GDM\,$ and $\angle CDN=\angle GDN$
which implies
$\qquad\qquad\angle GDM+\angle GDN=60^{\circ}.$

$\mathbf{\angle MDN=60^{\circ}\,\Rightarrow\,MN=BM+CN}$

Consider circle $(D)\,$ through $B\,$ and $C.\,$ Let a tangent from $M\,$ to $(D)\,$ cross $AC\,$ at $N',\,$ with $G\,$ the tangency point.

60° Angle And Importance of Being The Other End of a Diameter, solution, part 2

Then, $BM=GM\,$ and $CN'=GN',\,$ implying as above, that $\angle MDN'=60^{\circ}.\,$ It follows that $N'=N,\,$ $MN\,$ is tangent to $(D)\,$ at $G;\,$ $BM=GM\,$ and $CN=GN,\,$ and, therefore, $MN=BM+CN.$

Solution 2

60° Angle And Importance of Being The Other End of a Diameter, solution 2

Acknowledgment

The above problem by Miguel Ochoa Sanchez was originally posted at the Peru Geometrico facebook group and appeared on my timeline. Solution 2 is by Stelios Karpathios and was been translated and posted by Takis Chronopoulos.

Thanos Kalogerakis has observed that the statement holds for isosceles triangles $ABC,\,$ with $AB=AC\,$ and $\displaystyle \angle MDN=\frac{1}{2}(180^{\circ}-\angle ABC).\,$ The proof appears to require only minor modifications.

 

Related material
Read more...

  • Angle Trisectors on Circumcircle
  • Equilateral Triangles On Sides of a Parallelogram
  • Pompeiu's Theorem
  • Pairs of Areas in Equilateral Triangle
  • The Eutrigon Theorem
  • Equilateral Triangle in Equilateral Triangle
  • Seven Problems in Equilateral Triangle
  • Spiral Similarity Leads to Equilateral Triangle
  • Parallelogram and Four Equilateral Triangles
  • A Pedal Property in Equilateral Triangle
  • Miguel Ochoa's van Schooten Like Theorem
  • Two Conditions for a Triangle to Be Equilateral
  • Incircle in Equilateral Triangle
  • When Is Triangle Equilateral: Marian Dinca's Criterion
  • Barycenter of Cevian Triangle
  • Excircle in Equilateral Triangle
  • Converse Construction in Pompeiu's Theorem
  • Wonderful Trigonometry In Equilateral Triangle
  • One More Property of Equilateral Triangles
  • Van Khea's Quickie
  • |Contact| |Up| |Front page| |Contents| |Geometry| |Store|

    Copyright © 1996-2017 Alexander Bogomolny

     62086476

    Search by google: