Symmedian and 2 Antiparallels
What is this about?
A Mathematical Droodle


This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at http://www.java.com/en/download/index.jsp, download and install Java VM and enjoy the applet.


Buy this applet
What if applet does not run?

Explanation

|Activities| |Contact| |Front page| |Contents| |Geometry| |Store|

Copyright © 1996-2015 Alexander Bogomolny

The applets illustrates the following statement:

In a triangle ABC the antiparallels to sides AB and AC that meet on the symmedian from C have equal lengths.

This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at http://www.java.com/en/download/index.jsp, download and install Java VM and enjoy the applet.


Buy this applet
What if applet does not run?

Let CS be the symmedian and MR and LN the two antiparallels in question that meet in point T on CS. Triangle RTN having equal base angles at R and N is isosceles. Therefore,

(1) TN = TR.

Draw the third antiparallel UV through T. Similarly to the above, we have

TL = TV and
TM = TU.

However, as we know,

TU = TV.

Therefore

 
MR = TM + TR
  = TL + TN
  = LN.

Note that we actually got a little more than claimed: the corresponding pieces of the equal antiparallels cut off by the symmedian are also equal.

By transitivity, the three antiparallels through the symmedian point all have equal lengths.

Symmedian

  1. All about Symmedians
  2. Symmedian and Antiparallel
  3. Symmedian and 2 Antiparallels
  4. Symmedian in a Right Triangle
  5. Nobbs' Points and Gergonne Line
  6. Three Tangents Theorem
  7. A Tangent in Concurrency
  8. Symmedian and the Tangents
  9. Ceva's Theorem
  10. Bride's Chair
  11. Star of David
  12. Concyclic Circumcenters: A Dynamic View
  13. Concyclic Circumcenters: A Sequel

Related material
Read more...

  • What Is Antiparallel?
  • Antiparallel via Three Reflections
  • Symmedian and Antiparallel
  • Tucker Circles
  • Circle through the Incenter And Antiparallels
  • |Activities| |Contact| |Front page| |Contents| |Geometry| |Store|

    Copyright © 1996-2015 Alexander Bogomolny

     49551914

    Google
    Web CTK