A Tangent in Concurrency
What is this about?
A Mathematical Droodle
What if applet does not run? |
|Activities| |Contact| |Front page| |Contents| |Geometry|
Copyright © 1996-2018 Alexander BogomolnyThe applet purports to illustrate the following statement:
Let AXB be a semicircle with diameter AB and center O (X being a point on the semicircle different from A and B.) Let TA, TX, and TB denote the tangents to the circle at A, X, and B respectively. Assume that BX and AX produced beyond X intersect TA and TB in Y and Z, respectively. Then the three lines TX, YZ, and AB are either parallel or concurrent. |
What if applet does not run? |
Proof
Let TX meets TA in U and TB in V.
The three lines are clearly parallel if X lies in the middle of the arc AB. Assuming it is not, AU and BV are not equal, so that UV does meet AB. Let P be the point of intersection. I'll show that TX also passes through P.
Note that UA and UX are tangent to the same circle and are therefore equal:
(1) | ∠UAX = ∠UXA. |
Further, the fact that angles YAB and AXY are right implies
(2) |
|
ΔXUY is therefore isosceles, and
(3) | UY = UX. |
Combining (3) with
We might have started a little differently. Assume, for example, that U' is the midpoint of AY. Then XU' is a median to the hypotenuse of the right triangle AXY, which, as well known, means that
(4) | U'A = U'Y = U'X. |
Since U'A = U'X, and U'A is tangent to the circle, so is U'X. But the is only one tangent to the circle at X. Therefore,
(I must note that the statement just proven is a particular case of a more general theorem.)
References
- E. J. Barbeau, M. S. Klamkin, W. O. J. Moser, Five Hundred Mathematical Challenges, MAA, 1995, #314
Symmedian
- All about Symmedians
- Symmedian and Antiparallel
- Symmedian and 2 Antiparallels
- Symmedian in a Right Triangle
- Nobbs' Points and Gergonne Line
- Three Tangents Theorem
- A Tangent in Concurrency
- Symmedian and the Tangents
- Ceva's Theorem
- Bride's Chair
- Star of David
- Concyclic Circumcenters: A Dynamic View
- Concyclic Circumcenters: A Sequel
- Steiner's Ratio Theorem
- Symmedian via Squares and a Circle
- Symmedian via Parallel Transversal and Two Circles
- Symmedian and the Simson
- Characterization of the Symmedian Point with Medians and Orthic Triangle
- A Special Triangle with a Line Through the Lemoine Point
|Activities| |Contact| |Front page| |Contents| |Geometry|
Copyright © 1996-2018 Alexander Bogomolny72021524