Three Complex Numbers Satisfy Fermat's Identity For Prime Powers
Problem
Solution 1
Not that $x^6=y^6=2^6=z^6.$ Also, $x+y=2=z$ and $\displaystyle \frac{1}{x}+\frac{1}{y}=\frac{1}{2}=\frac{1}{z}.$
Now, all prime numbers are in the form $p=6m\pm 1.$ Assume $p=6m+1.$ Then
$\begin{align} x^{p}+y^{p}&=x\cdot x^{6m}+y\cdot y^{6m}=x\cdot (x^6)^m+y\cdot (y^6)^m\\ &=2^{6m}(x+y)=2^{6m+1}=2^p\\ &=z^p. \end{align}$
For $p=6m-1$ the derivation is practically the same:
$\displaystyle \begin{align} x^{p}+y^{p}&=\frac{1}{x}\cdot x^{6m}+\frac{1}{y}\cdot y^{6m}=\frac{1}{x}\cdot (x^6)^m+\frac{1}{y}\cdot (y^6)^m\\ &=2^{6m}(\frac{1}{x}+\frac{1}{y})=2^{6m}\cdot\frac{1}{2}=2^{6m-1}=2^p\\ &=z^p. \end{align}$
Solution 2
$\displaystyle \begin{align} f&=\left(\frac{x}{2}\right)^p+\left(\frac{y}{2}\right)^p=\left(\frac{1}{2}+i\frac{\sqrt{3}}{2}\right)^p+\left(\frac{1}{2}-i\frac{\sqrt{3}}{2}\right)^p\\ &=\exp\left(\frac{ip\pi}{3}\right)+\exp\left(\frac{-ip\pi}{3}\right)\\ &=2\cos\frac{p\pi}{3}. \end{align}$
Every prime greater than $3$ is of the form $6k+1$ or $6k-1$ where $k$ is a positive integer. Thus,
$\displaystyle f=2\cos\left(2k\pi\pm\frac{\pi}{3}\right)=2\cos\left(\frac{\pi}{3}\right)=1.$
Acknowledgment
The problem came from Ross Honsberger's Mathematical Morsels, (MAA, 1978, #20). Honsberger refers to problem E518 from AMM (1943), p. 63. Solved by J. Rosenbaum, CT.
Solution 2 is by Amit Itagi.
Remark
It must be noted that the above solutions work for all $6m\pm 1,$ $m\ge 1,$ not necessarily prime. Thus the imposition that $p$ needs to be a prime is a diversion and, therefore, a red herring.
What Is Red Herring
- On the Difference of Areas
- Area of the Union of Two Squares
- Circle through the Incenter
- Circle through the Incenter And Antiparallels
- Circle through the Circumcenter
- Inequality with Logarithms
- Breaking Chocolate Bars
- Circles through the Orthocenter
- 100 Grasshoppers on a Triangular Board
- Simultaneous Diameters in Concurrent Circles
- An Inequality from the 2015 Romanian TST
- Schur's Inequality
- Further Properties of Peculiar Circles
- Inequality with Csc And Sin
- Area Inequality in Trapezoid
- Triangles on HO
- From Angle Bisector to 120 degrees Angle
- A Case of Divergence
- An Inequality for the Cevians through Spieker Point via Brocard Angle
- An Inequality In Triangle and Without
- Problem 3 from the EGMO2017
- Mickey Might Be a Red Herring in the Mickey Mouse Theorem
- A Cyclic Inequality from the 6th IMO, 1964
- Three Complex Numbers Satisfy Fermat's Identity For Prime Powers
- Probability of Random Lines Crossing
- Planting Trees in a Row
- Two Colors - Three Points
|Contact| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny72182677