Symmedian in a Right Triangle
What is this about?
A Mathematical Droodle


This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at http://www.java.com/en/download/index.jsp, download and install Java VM and enjoy the applet.


Buy this applet
What if applet does not run?

Explanation

|Activities| |Contact| |Front page| |Contents| |Geometry| |Store|

Copyright © 1996-2015 Alexander Bogomolny

The applet suggests a simple fact that, in a right triangle, the symmedian to the hypotenuse coincides with the altitude from the right angle.


This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at http://www.java.com/en/download/index.jsp, download and install Java VM and enjoy the applet.


Buy this applet
What if applet does not run?

A symmedian is the isogonal conjugate of a median from the same vertex. Thus, for example, in right triangle ABC, with the right angle at C, if CM is the median and CH is the symmedian through C, then angles ACM and BCH are equal. But in a right triangle, the median through the right angle equals half the hypotenuse, so that triangle AMC is isosceles. Its base angles MCA and MAC are equal. We thus have

  ∠CAB = ∠BCH,
∠CAB + ∠ABC = 90°, and
∠ABC = ∠HBC.

Therefore

  ∠HBC + ∠CBH = 90°.

It thus follows that angle CHB is right, as asserted.

Symmedian

  1. All about Symmedians
  2. Symmedian and Antiparallel
  3. Symmedian and 2 Antiparallels
  4. Symmedian in a Right Triangle
  5. Nobbs' Points and Gergonne Line
  6. Three Tangents Theorem
  7. A Tangent in Concurrency
  8. Symmedian and the Tangents
  9. Ceva's Theorem
  10. Bride's Chair
  11. Star of David
  12. Concyclic Circumcenters: A Dynamic View
  13. Concyclic Circumcenters: A Sequel

|Activities| |Contact| |Front page| |Contents| |Geometry| |Store|

Copyright © 1996-2015 Alexander Bogomolny

 49552041

Google
Web CTK