Dividing a Segment into Equal Parts by Paper Folding
It is easy to find the midpoint of a side of a square piece of paper by simply folding one of the corners onto an adjacent corner. This done, we can also find 1/3 of the side, as shown below.
We do not need anything more sophisticated to get 1/4 of the side than finding another midpoint, but, as the second diagram shows, starting with 1/3 of the side we still can get 1/4, and then also 1/5. The procedure is general enough and leads to a successive construction of a 1/k-th of the side for any whole k. To see why this is so, consider the diagram below:
,
where the corner B has been folded onto the point Q, such that AQ = AD/k, for a given k, not necessarily an integer. We shall assume the side of the square to be 1. Let
(1 - x)2 - x2 = 1/k2,
from which x = (k2 - 1)/(2k2).
Further, angle PQR = 90°, which implies similarity of right triangles APQ and DQR:
DR/DQ = AQ/AP,
or
DR | = DQ·AQ/AP |
= (1 - 1/k) · 1/k · 2k2/(k2 - 1) | |
= (k - 1)/k · 1/k · 2k2/(k2 - 1) | |
= 2/(k + 1). |
For the midpoint T of DR, we get
DT = 1/(k + 1),
which proves the construction.
Remark
After completing this page I have discovered R. J. Lang's online paper where he describes this method as Haga's Construction after Kazuo Haga.
Another procedure known as the crossing diagonal method has a longer history and an exciting story that evolved around 1995.
References
- C. Abbott, What Good Is Proof by Induction Anyway?, Math. Horizons, Sept. 2005, pp. 8-9
- R. J. Lang, Four Problems III, British Origami, no 132, October 1988, pp. 7-11
- An Interesting Example of Angle Trisection by Paperfolding
- Angle Trisection by Paper Folding
- Angles in Triangle Add to 180o
- Broken Chord Theorem by Paper Folding
- Dividing a Segment into Equal Parts by Paper Folding
- Egyptian Triangle By Paper Folding
- Egyptian Triangle By Paper Folding II
- Egyptian Triangle By Paper Folding III
- My Logo
- Paper Folding And Cutting Sangaku
- Parabola by Paper Folding
- Radius of a Circle by Paper Folding
- Regular Pentagon Inscribed in Circle by Paper Folding
- Trigonometry by Paper Folding
- Folding Square in a Line through the Center
- Tangent of 22.5o - Proof Without Words
- Regular Octagon by Paper Folding
- The Shortest Crease
- Fold Square into Equilateral Triangle
- Circle Center by Paperfolding
- Folding and Cutting a Square
|Front page| |Contents| |Geometry|
Copyright © 1996-2018 Alexander Bogomolny72088825