Problem From the 2016 IMO Shortlist
Problem
Solution 1
The required inequality is equivalent to
$\displaystyle \ln(a^2+1)+\ln(b^2+1)+\ln(c^2+1)\le 3\ln\left[\left(\frac{a+b+c}{3}\right)^2+1\right].$
Consider the function $f:\,(0,\infty)\to\mathbb{R},\,$ defined by $f(x)=\ln(x^2+1).\,$ We have $\displaystyle f'(x)=\frac{2x}{x^2+1}\,$ and $\displaystyle f''(x)=-\frac{2(x^2-1)}{(x^2+1)^2}.\,$ It follows that function $f\,$ is concave on $\displaystyle \left[\frac{1}{2},\infty\right).$
Let, WLOG, $a\le b\le c.\,$ Then it could not be that $b\lt 1,\,$ for, otherwise, $a\lt 1\,$ also and then $ab\lt 1,\,$ in contradiction with the constraint. Thus, $b\ge 1.\,$ Since, by the assumption, $c\ge b,\,$ c\ge 1.\,$ We consider two cases:
$\mathbf{a\ge 1}$
By Jensen's inequality, $\displaystyle f(a)+f(b)+f(c)\le 3f\left(\frac{a+b+c}{3}\right),\,$ i.e.,
$\displaystyle \ln(a^2+1)+\ln(b^2+1)+\ln(c^2+1)\le 3\ln\left[\left(\frac{a+b+c}{3}\right)^2+1\right],$
as required.
$\mathbf{0\lt a\le 1}$
By Jensen's inequality, $\displaystyle f(b)+f(c)\le 2f\left(\frac{b+c}{2}\right),\,$ so that,
$\displaystyle\small{\ln(a^2+1)+\ln(b^2+1)+\ln(c^2+1)\le \ln(a^2+1)+2\ln\left[\left(\frac{b+c}{2}\right)^2+1\right]}.$
Suffice it to prove that
$\displaystyle \ln(a^2+1)+2\ln\left[\left(\frac{b+c}{2}\right)^2+1\right]\le3\ln\left[\left(\frac{a+b+c}{3}\right)^2+1\right].$
Since $ab,ac\ge 1,\,$ $\displaystyle a\left(\frac{b+c}{2}\right)\ge 1.\,$ Let $\displaystyle \frac{b+c}{2}=t.\,$ Then $\displaystyle t\ge \frac{1}{a}.\,$ We'll show that, for all $\displaystyle s\ge\frac{1}{a},\,$
$\displaystyle \ln(a^2+1)+2\ln(s^2+1)\le 3\ln\left[\left(\frac{a+2s}{3}\right)^2+1\right]$
Consider the function $\displaystyle g:\,\left[\frac{1}{a},\infty\right)\to\mathbb{R},\,$ defined by
$\displaystyle g(x)=3\ln\left[\left(\frac{a+2s}{3}\right)^2+1\right]-2\ln(s^2+1)-\ln(a^2+1).$
Then
$\displaystyle\begin{align} g'(x)&=\frac{\displaystyle 4\left(\frac{a+2x}{3}\right)}{\displaystyle \left(\frac{a+2x}{3}\right)^2+1}-\frac{4x}{x^2+1}\\ &=2\left(f'\left(\frac{a+2x}{3}\right)-f'(x)\right). \end{align}$
But $a+x\ge 2\sqrt{ax}\ge 2\,$ and $\displaystyle x\ge\frac{1}{a}\ge 1,\,$ implying $\displaystyle \frac{a+2x}{3}\ge 1.\,$ Also, $\displaystyle \frac{a+2x}{3}\le x.\,$ Now, since $f'\,$ is decreasing on $[a,\infty),\,$ $\displaystyle f'\left(\frac{a+2x}{3}\right)\ge f'(x),\,$ implying $g'(x)\ge 0,\,$ for all $\displaystyle x\ge\frac{1}{a},\,$ so that
$\displaystyle\begin{align}\min g&=g\left(\frac{1}{a}\right)\\ &=3\ln(a^4+13a^2+4)-3\ln(a^2+1)-\ln a^2-6\ln 3. \end{align}$
Finally, consider the function $h:\,(0,1]\to\mathbb{R},\,$ defined by
$h(x)=3\ln(x^2+13x+4)-3\ln(x+1)-\ln(x)-6\ln(3).$
Then $\displaystyle h'(x)=\frac{(x-1)^2(x-2)}{x(x+1)(x^2+13x+4)}\le 0,\,$ for all $x\in (0,1],\,$ implying $h(a^2)\ge h(1)=0,\,$ and this completes the proof.
Solution 2
Note that, if $\sqrt{xy}\ge 1\,$ then also $\displaystyle \frac{x+y}{2}\ge\sqrt{xy}\ge 1.\,$ Thus,
$\displaystyle \frac{a+b}{2}\ge 1,\,\frac{b+c}{2}\ge 1,\,\frac{c+a}{2}\ge 1,$
implying, in particular, $\displaystyle a+b+c=\frac{a+b}{2}+\frac{b+c}{2}+\frac{c+a}{2}\ge 3.$
The inequality is equivalent to
(1)
$9\sqrt[3]{(a^2+1)(b^2+1)(c^2+1)}\le (a+b+c)^2+9.$
Now we prove
Lemma
Prove that, for positive real numbers $x,y,\,$ subject to $xy\ge 1,$
$\displaystyle (x^2+1)(y^2+1)\le\left(1+\left(\frac{x+y}{2}\right)^2\right)^2.$
Indeed, $(x^2+1)(y^2+1)=1+x^2+y^2+x^2y^2=1+s^2-2p+p^2,\,$ where $s=x+y\,$ and $p=xy\ge 1.$
Define function $\displaystyle f:\,\left[1,\frac{s^2}{4}\right]\to\mathbb{R}\,$ by $f(p)=1+s^2-2p+p^2.\,$ $f'(p)=2p-2\ge 0,\,$ making $f\,$ increasing, so that
$\displaystyle f(p)\le f\left(\frac{s^2}{4}\right)=1-s^2-2\frac{s^2}{4}+\frac{s^4}{16}=\left(1+\frac{s^2}{4}\right)^2,$
which is exactly the lemma's claim.

Because of the constraint, we may assume that at least one of $a,b,c\,$ is not less than $1,\,$ say, $c\ge 1.\,$ Then also $\displaystyle c\cdot\frac{a+b+c}{3}\ge 1,\,$ and the lemma shows that
$\displaystyle (1+c^2)\left(\left(\frac{a+b+c}{3}\right)^2+1\right)\le\left(1+\left(\frac{\displaystyle c+\frac{a+b+c}{3}}{2}\right)^2\right)^2.$
Also
$\displaystyle \begin{align} &\left(1+\left(\frac{a+b}{2}\right)^2\right)^2\cdot\left(1+\left(\frac{\displaystyle c+\frac{a+b+c}{3}}{2}\right)^2\right)^2\\ &\qquad=\left[\left(1+\left(\frac{a+b}{2}\right)^2\right)\cdot\left(1+\left(\frac{\displaystyle c+\frac{a+b+c}{3}}{2}\right)^2\right)\right]^2\\ &\qquad\le\left[1+\left(\frac{\displaystyle \frac{a+b}{2}+\frac{\displaystyle c+\frac{a+b+c}{3}}{2}}{2}\right)^2\right]^2\\ &\qquad=\left[1+\left(\frac{a+b+c}{3}\right)^2\right]^4. \end{align}$
Thus we see that
$\displaystyle (a^2+1)(b^2+1)(c^2+1)\left(1+\left(\frac{a+b+c}{3}\right)^2\right)\le\left[1+\left(\frac{a+b+c}{3}\right)^2\right]^4,$
or
$\displaystyle (a^2+1)(b^2+1)(c^2+1)\le\left[1+\left(\frac{a+b+c}{3}\right)^2\right]^3.$
Acknowledgment
My thanks go to Leo Giugiuc who has kindly communicated to me this problem from the 2016 IMO Shortlist, along with a solution of his. Solution 2 is by Marian Dinca who also observed that the problem admits a generalization:
Prove that, for positive real numbers $a_k,\,$ $k=1,\ldots,n,\,$ subject to $\min\{a_ka_{k+1}\}\ge 1,\,$ where $a_{n+1}=a_1,$
$\displaystyle \sqrt[n]{\prod_{k=1}^n(a_k^2+1)}\le\left(\frac{\displaystyle \sum_{k=1}^na_k}{\displaystyle n}\right)^2+1.$
- A Cyclic But Not Symmetric Inequality in Four Variables $\left(\displaystyle 5(a+b+c+d)+\frac{26}{abc+bcd+cda+dab}\ge 26.5\right)$
- An Inequality with Constraint $\left((x+1)(y+1)(z+1)\ge 4xyz\right)$
- An Inequality with Constraints II $\left(\displaystyle abc+\frac{2}{ab+bc+ca}\ge\frac{5}{a^2+b^2+c^2}\right)$
- An Inequality with Constraint III $\left(\displaystyle \frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge 3\right)$
- An Inequality with Constraint IV $\left(\displaystyle\sum_{k=1}^{n}\sqrt{x_k}\ge (n-1)\sum_{k=1}^{n}\frac{1}{\sqrt{x_k}}\right)$
- An Inequality with Constraint VII $\left(|(2x+3y-5z)-3(x+y-5z)|=|-x+10z|\le\sqrt{101}\right)$
- An Inequality with Constraint VIII $\left(\sqrt{24a+1}+\sqrt{24b+1}+\sqrt{24c+1}\ge 15\right)$
- An Inequality with Constraint IX $\left(x^2+y^2\ge x+y\right)$
- An Inequality with Constraint X $\left((x+y+p+q)-(x+y)(p+q)\ge 1\right)$
- Problem 11804 from the AMM $\left(10|x^3 + y^3 + z^3 - 1| \le 9|x^5 + y^5 + z^5 - 1|\right)$
- Sladjan Stankovik's Inequality With Constraint $\left(abc+bcd+cda+dab-abcd\le\displaystyle \frac{27}{16}\right)$
- An Inequality with Constraint XII $\left(abcd\ge ab+bc+cd+da+ac+bd-5\right)$
- An Inequality with Constraint XIV $\left(\small{64(a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2) \le 3(a+b+c)^6}\right)$
- An Inequality with Constraint XVII $\left(a^3+b^3+c^3\ge 0\right)$
- An Inequality with Constraint in Four Variables II $\left(a^3+b^3+c^3+d^3 + 6abcd \ge 10\right)$
- An Inequality with Constraint in Four Variables III $\left(\displaystyle\small{abcd+\frac{15}{2(ab+ac+ad+bc+bd+cd)}\ge\frac{9}{a^2+b^2+c^2+d^2}}\right)$
- An Inequality with Constraint in Four Variables V $\left(\displaystyle 5\sum \frac{abc}{\sqrt[3]{(1+a^3)(1+b^3)(1+c^3)}}\leq 4\right)$
- An Inequality with Constraint in Four Variables VI $\left(\displaystyle \sum_{cycl}a^2+6\cdot\frac{\displaystyle \sum_{cycl}abc}{\displaystyle \sum_{cycl}a}\ge\frac{5}{3}\sum_{sym}ab\right)$
- A Cyclic Inequality in Three Variables with Constraint $\left(\displaystyle a\sqrt{bc}+b\sqrt{ca}+c\sqrt{ab}+2abc=1\right)$
- Dorin Marghidanu's Cyclic Inequality with Constraint $\left(\displaystyle 2a^2-2\sqrt{2}(b+c)a+3b^2+4c^2-2\sqrt{bc}\gt 0\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints $\left(\displaystyle \frac{1}{\sqrt{a+b^2}}+ \frac{1}{\sqrt{b+c^2}}+ \frac{1}{\sqrt{c+a^2}}\ge\frac{1}{\sqrt{a+b+c}}\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints II $\left(\displaystyle \sum_{cycl}\frac{\displaystyle \frac{x}{y}+1+\frac{y}{x}}{\displaystyle \frac{1}{x}+\frac{1}{y}}\le 9\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints III $\left(\displaystyle 12+\sum_{cycl}\left(\sqrt{\frac{x^3}{y}}+\sqrt{\frac{x^3}{y}}\right)\ge 8(x+y+z)\right)$
- Inequality with Constraint from Dan Sitaru's Math Phenomenon $\left(\displaystyle b+2a+20\ge 2\sum_{cycl}\frac{a^2+ab+b^2}{a+b}\ge b+2c+20\right)$
- Another Problem from the 2016 Danubius Contest $\left(\displaystyle \frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\le 1\right)$
- Gireaux's Theorem (If a continuous function of several variables is defined on a hyperbrick and is convex in each of the variables, it attains its maximum at one of the corners)
- An Inequality with a Parameter and a Constraint $\left(\displaystyle a^4+b^4+c^4+\lambda abc\le\frac{\lambda +1}{27}\right)$
- Unsolved Problem from Crux Solved $\left(a_1a_2a_3a_4a_5a_6\le\displaystyle \frac{5}{2}\right)$
- An Inequality With Six Variables and Constraints Find the range of $\left(a^2+b^2+c^2+d^2+e^2+f^2\right)$
- Cubes Constrained $\left(3(a^4+b^4)+2a^4b^4\le 8\right)$
- Dorin Marghidanu's Inequality with Constraint $\left(\displaystyle \frac{1}{a_1+1}+\frac{2}{2a_2+1}+\frac{3}{3a_3+1}\ge 4\right)$
- Dan Sitaru's Integral Inequality with Powers of a Function $\left(\displaystyle\left(\int_0^1f^5(x)dx\right)\left(\int_0^1f^7(x)dx\right)\left(\int_0^1f^9(x)dx\right)\ge 2\right)$
- Michael Rozenberg's Inequality in Three Variables with Constraints $\left(\displaystyle 4\sum_{cycl}ab(a^2+b^2)\ge\sum_{cycl}a^4+5\sum_{cycl}a^2b^2+2abc\sum_{cycl}a\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints IV $\left(\displaystyle \frac{(4x^2y^2+1)(36y^2z^2+1)(9x^2z^2+1)}{2304x^2y^2z^2}\geq \frac{1}{(x+2y+3z)^2}\right)$
- Refinement on Dan Sitaru's Cyclic Inequality In Three Variables $\left(\displaystyle \frac{(4x^2y^2+1)(36y^2z^2+1)(9x^2z^2+1)}{2304x^2y^2z^2}\geq \frac{1}{3\sqrt{3}}\right)$
- An Inequality with Arbitrary Roots $\left(\displaystyle \sum_{cycl}\left(\sqrt[n]{a+\sqrt[n]{a}}+\sqrt[n]{a-\sqrt[n]{a}}\right)\lt 18\right)$
- Leo Giugiuc's Inequality with Constraint $\left(\displaystyle 2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\le ab+bc+ca\right)$
- Problem From the 2016 IMO Shortlist \sqrt[3]{(a^2+1)(b^2+1)(c^2+1)}\le\left(\frac{a+b+c}{3}\right)^2+1\right)$
- Dan Sitaru's Cyclic Inequality with a Constraint and Cube Roots $\left(\displaystyle \sum_{cycl}\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\le\frac{4}{5}\right)$
- Dan Sitaru's Cyclic Inequality with a Constraint and Cube Roots II $\left(\displaystyle \sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}+\sqrt[3]{d}\le\sqrt[3]{abcd}\right)$
- A Simplified Version of Leo Giugiuc's Inequality from the AMM $\left(\displaystyle a^3+b^3+c^3\ge 3\right)$
- Kunihiko Chikaya's Inequality $\displaystyle \small{\left(\frac{(a^{10}-b^{10})(b^{10}-c^{10})(c^{10}-a^{10})}{(a^{9}+b^{9})(b^{9}+c^{9})(c^{9}+a^{9})}\ge\frac{125}{3}[(a-b)^3+(b-c)^3+(c-a)^3]\right)}$
- A Cyclic Inequality on [-1,1] $\left(xy+yz+zx\ge 1\right)$
- An Inequality with Two Triples of Variables $\left(\displaystyle\sum_{cycl}ux\ge\sqrt{\left(\sum_{cycl}xy\right)\left(2\sum_{cycl}uv-\sum_{cycl}u^2\right)}\right)$
- 6th European Mathematical Cup (2017), Junior Problem 4 $\left(x^3 - (y^2 + yz + z^2)x + y^2z + yz^2 \le 3\sqrt{3}\right)$
- Dorin Marghidanu's Example $\left(\displaystyle\frac{\displaystyle\frac{1}{b_1}+\frac{2}{b_2}+\frac{3}{b_3}}{1+2+3}\ge\frac{1+2+3}{b_1+2b_2+3b_3}\right)$
- A Trigonometric Inequality with Ordered Triple of Variables $\left((x+y)\sin x+(x-z)\sin y\lt (y+z)\sin x\right)$
- Three Variables, Three Constraints, Two Inequalities (Only One to Prove) - by Leo Giugiuc $\bigg(a+b+c=0$ and $a^2+b^2+c^2\ge 2$ Prove that $abc\ge 0\bigg)$
- Hung Nguyen Viet's Inequality with a Constraint $\left(1+2(xy+yz+zx)^2\ge (x^3+y^3+z^3+6xyz)^2\right)$
- A Cyclic Inequality by Seyran Ibrahimov $\left(\displaystyle \sum_{cycl}\frac{x}{y^4+y^2z^2+z^4}\le\frac{1}{(xyz)^2}\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints V $\left(\displaystyle \frac{1}{\sqrt{ab(a+b)}}+\frac{1}{\sqrt{bc(b+c)}}+\frac{1}{\sqrt{ca(c+a)}}\le 3+\frac{a+b+c}{abc}\right)$
- Cyclic Inequality In Three Variables From Kvant $\left(\displaystyle \frac{a}{bc+1}+\frac{b}{ca+1}+\frac{c}{ab+1}\le 2\right)$
- Cyclic Inequality In Three Variables From Vietnam by Rearrangement $\left(\displaystyle \frac{x^3+y^3}{y^2+z^2}+\frac{y^3+z^3}{z^2+x^2}+\frac{z^3+x^3}{x^2+y^2}\le 3\right)$
- A Few Variants of a Popular Inequality And a Generalization $\left(\displaystyle \frac{1}{(a+b)^2+4}+\frac{1}{(b+c)^2+4}+\frac{1}{(c+a)^2+4}\le \frac{3}{8}\right)$
- Two Constraints, One Inequality by Qing Song $\left(|a|+|b|+|c|\ge 6\right)$
- A Moscow Olympiad Question with Two Inequalities $\left(\displaystyle b^2\gt 4ac\right)$ A Problem form the Short List of the 2018 JBMO $\left(ab^3+bc^3+cd^3+da^3\ge a^2b^2+b^2c^2+c^2d^2+d^2a^2\right)$
- An Inequality from a Mongolian Exam $\left(\displaystyle 2\sum_{i=1}^{2n-1}(x_i-A)^2\ge \sum_{i=1}^{2n-1}(x_i-x_n)^2\right)$

|Contact| |Up| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny72392305