Gireaux's Theorem
Theorem
If a continuous function of several variables is defined on a hyperbrick and is convex in each of the variables, it attains its maximum at one of the corners. More formally:
The statement of the theorem is a specification of a theorem of Weierstrass (the Extreme Values Theorem) that states that a continuous function defined on a compact set attains its extremes in the set. Assume now that the function is convex in each of its variables (i.e., as a function of one argument, with other arguments fixed.) A continuous function of one variable, convex on a closed interval, attains its maximum at one of the endpoints of the interval. This means that the maximum of the given function is attained at either, say, ${a_1}\times I_2\times\ldots\times I_n\,$ or ${b_1}\times I_2\times\ldots\times I_n,\,$ which reduces the dimension of the search for the maximum by $1.\,$ Doing this recursively proves the statement.
References
- Israel Meireles Chrisostomo, Trigonometria Pura e Aplicações e um pouco além: problemas de Olimpíadas, 3 de Julho, 2015
USA 1980
Prove that, for $a,b,c\in[0,1],$
$\displaystyle\small{\frac{a}{b+c+1}+\frac{b}{c+a+1}+\frac{c}{a+b+1}+(1-a)(1-b)(1-c)\le 1}.$
The function $f(a,b,c)=\displaystyle \sum_{cycl}\frac{a}{b+c+1}+\prod_{cycl}(1-a)\,$ is convex in each of the three variables $a,b,c,\,$ so that $f\,$ takes its maximum value in one of either vertices of the cube $0\le a\le 1,\,0\le b\le 1,\,0\le c\le 1.\,$ Since $f(a,b,c)\,$ takes value $1\,$ in each of these points, the required inequality is proven.
References
- M. S. Klamkin, USA Mathematical Olympiads 1972-1986, MAA, 1988
Dan Sitaru I
Prove that, for $a,b,c,d\in [0,2],$
$\displaystyle\small{\frac{9a}{1+bcd}+\frac{9b}{1+cda}+\frac{9c}{1+dab}+\frac{9d}{1+abc}+9e^{abcd}\leq 8+9e^{16}}.$
$f:\,[0,2]^4\to \mathbb{R},\,$ $\displaystyle f(a,b,c,d)=9\sum \frac{a}{1+bcd}+9e^{abcd}.\,$
$\displaystyle f'_a=\frac{9}{1+bcd}-\frac{9bcd}{(1+cda)^2}-\frac{9cdb}{(1+dab)^2}-\frac{9dbc}{(1+abc)^2}+9bcde^{abcd},$
$\displaystyle f''_{aa}=\frac{18bc^2d^2}{(1+cda)^3}+\frac{18cd^2b^2}{(1+dab)^3}+\frac{18db^2c^2}{(1+abc)^3}+9b^2c^2d^2 e^{abcd}\gt 0.$
$f\,$ strictly convex in variable $a\,$ and, similarly, in the rest of the variables. $f\,$ defined on a compact set $[0,2]^4,\,$ hence, by Gireaux's theorem $f\,$ attains it maximum at the vertices of the hypercube $[0,1]^4.\,$ It is easy to check that the maximum is attained for $f(2,2,2,2)=4\cdot \frac{18}{1+8}+9e^{16}=8+9e^{16},\,$ thus proving the inequality.
Dan Sitaru II
Prove that, for $x,y,z\in [0,1],$
$\displaystyle\small{\frac{x}{y+z+2016}+\frac{y^2}{z+x+2016}+\frac{z^3}{x+y+2016}+(1-x)(1-y)(1-z)\le 1}.$
$f:\,[0,2]^3\to \mathbb{R},$
$\displaystyle f(x,y,z)=\frac{x}{y+z+2016}+\frac{y^2}{z+x+2016}+\frac{z^3}{x+y+2016}\\ \qquad\qquad+(1-x)(1-y)(1-z)$
We easily check that
$\displaystyle f'_xx=\frac{2y^2}{(x+z+2016)^3}+\frac{2z^3}{(x+y+2016)^3}\gt 0.$
$f\,$ strictly convex in variable $a\,$ and, similarly, in the rest of the variables. $f\,$ defined on a compact set $[0,2]^4,\,$ hence, by Gireaux's theorem $f\,$ attains it maximum at the vertices of the hypercube $[0,1]^3.\,$ It is easy to check that the maximum is attained for $f(0,0,0)=1,\,$ thus proving the inequality.
Second proof (Leo Guigiuc)
From $x,y,z\in [0,1]\,$ it follows that $\displaystyle\frac{x}{y+z+2016}\le\frac{x}{3};\,$ $\displaystyle \frac{y^2}{z+x+2016}\le\frac{y}{3},\,$ $\displaystyle\frac{z^3}{x+y+2016}\le\frac{z}{3}.\,$ Thus suffice it to prove that
$\displaystyle f(x,y,z)=\frac{x+y+z}{3}+(1-x)(1-y)(1-z)\le 1.$
Let $a=1-x,\,$ $b=1-y,\,$ $c=1-z.\,$ The inequality to prove becomes
$\displaystyle \frac{1-a+1-b+1-c}{3}+abc\le 1,$
or, $\displaystyle abc\le\frac{a+b+c}{3},\,$ which is true because, for $a,b,c\in [0,1],\,$ $abc\le\sqrt[3]{abc}\,$ and by the AM-GM inequality.
Third proof
Observe that $f(x,y,z)\,$ defined in the second proof is linear, hence convex, in each of its arguments. Gireaux's theorem applies. $f(0,0,0)=1,\,$ $f(0,0,1)=\displaystyle\frac{1}{3},\,$ $f(0,1,1)=\displaystyle\frac{2}{3},\,$ $f(1,1,1)=\displaystyle\frac{1}{3}=1.$
Acknowledgment
I am indebted to Dan Sitaru for supplying the references and the examples.
- A Cyclic But Not Symmetric Inequality in Four Variables $\left(\displaystyle 5(a+b+c+d)+\frac{26}{abc+bcd+cda+dab}\ge 26.5\right)$
- An Inequality with Constraint $\left((x+1)(y+1)(z+1)\ge 4xyz\right)$
- An Inequality with Constraints II $\left(\displaystyle abc+\frac{2}{ab+bc+ca}\ge\frac{5}{a^2+b^2+c^2}\right)$
- An Inequality with Constraint III $\left(\displaystyle \frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge 3\right)$
- An Inequality with Constraint IV $\left(\displaystyle\sum_{k=1}^{n}\sqrt{x_k}\ge (n-1)\sum_{k=1}^{n}\frac{1}{\sqrt{x_k}}\right)$
- An Inequality with Constraint VII $\left(|(2x+3y-5z)-3(x+y-5z)|=|-x+10z|\le\sqrt{101}\right)$
- An Inequality with Constraint VIII $\left(\sqrt{24a+1}+\sqrt{24b+1}+\sqrt{24c+1}\ge 15\right)$
- An Inequality with Constraint IX $\left(x^2+y^2\ge x+y\right)$
- An Inequality with Constraint X $\left((x+y+p+q)-(x+y)(p+q)\ge 1\right)$
- Problem 11804 from the AMM $\left(10|x^3 + y^3 + z^3 - 1| \le 9|x^5 + y^5 + z^5 - 1|\right)$
- Sladjan Stankovik's Inequality With Constraint $\left(abc+bcd+cda+dab-abcd\le\displaystyle \frac{27}{16}\right)$
- An Inequality with Constraint XII $\left(abcd\ge ab+bc+cd+da+ac+bd-5\right)$
- An Inequality with Constraint XIV $\left(\small{64(a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2) \le 3(a+b+c)^6}\right)$
- An Inequality with Constraint XVII $\left(a^3+b^3+c^3\ge 0\right)$
- An Inequality with Constraint in Four Variables II $\left(a^3+b^3+c^3+d^3 + 6abcd \ge 10\right)$
- An Inequality with Constraint in Four Variables III $\left(\displaystyle\small{abcd+\frac{15}{2(ab+ac+ad+bc+bd+cd)}\ge\frac{9}{a^2+b^2+c^2+d^2}}\right)$
- An Inequality with Constraint in Four Variables V $\left(\displaystyle 5\sum \frac{abc}{\sqrt[3]{(1+a^3)(1+b^3)(1+c^3)}}\leq 4\right)$
- An Inequality with Constraint in Four Variables VI $\left(\displaystyle \sum_{cycl}a^2+6\cdot\frac{\displaystyle \sum_{cycl}abc}{\displaystyle \sum_{cycl}a}\ge\frac{5}{3}\sum_{sym}ab\right)$
- A Cyclic Inequality in Three Variables with Constraint $\left(\displaystyle a\sqrt{bc}+b\sqrt{ca}+c\sqrt{ab}+2abc=1\right)$
- Dorin Marghidanu's Cyclic Inequality with Constraint $\left(\displaystyle 2a^2-2\sqrt{2}(b+c)a+3b^2+4c^2-2\sqrt{bc}\gt 0\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints $\left(\displaystyle \frac{1}{\sqrt{a+b^2}}+ \frac{1}{\sqrt{b+c^2}}+ \frac{1}{\sqrt{c+a^2}}\ge\frac{1}{\sqrt{a+b+c}}\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints II $\left(\displaystyle \sum_{cycl}\frac{\displaystyle \frac{x}{y}+1+\frac{y}{x}}{\displaystyle \frac{1}{x}+\frac{1}{y}}\le 9\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints III $\left(\displaystyle 12+\sum_{cycl}\left(\sqrt{\frac{x^3}{y}}+\sqrt{\frac{x^3}{y}}\right)\ge 8(x+y+z)\right)$
- Inequality with Constraint from Dan Sitaru's Math Phenomenon $\left(\displaystyle b+2a+20\ge 2\sum_{cycl}\frac{a^2+ab+b^2}{a+b}\ge b+2c+20\right)$
- Another Problem from the 2016 Danubius Contest $\left(\displaystyle \frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\le 1\right)$
- Gireaux's Theorem
- An Inequality with a Parameter and a Constraint $\left(\displaystyle a^4+b^4+c^4+\lambda abc\le\frac{\lambda +1}{27}\right)$
- Unsolved Problem from Crux Solved $\left(a_1a_2a_3a_4a_5a_6\le\displaystyle \frac{5}{2}\right)$
- An Inequality With Six Variables and Constraints Find the range of $\left(a^2+b^2+c^2+d^2+e^2+f^2\right)$
- Cubes Constrained $\left(3(a^4+b^4)+2a^4b^4\le 8\right)$
- Dorin Marghidanu's Inequality with Constraint $\left(\displaystyle \frac{1}{a_1+1}+\frac{2}{2a_2+1}+\frac{3}{3a_3+1}\ge 4\right)$
- Dan Sitaru's Integral Inequality with Powers of a Function $\left(\displaystyle\left(\int_0^1f^5(x)dx\right)\left(\int_0^1f^7(x)dx\right)\left(\int_0^1f^9(x)dx\right)\ge 2\right)$
- Michael Rozenberg's Inequality in Three Variables with Constraints $\left(\displaystyle 4\sum_{cycl}ab(a^2+b^2)\ge\sum_{cycl}a^4+5\sum_{cycl}a^2b^2+2abc\sum_{cycl}a\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints IV $\left(\displaystyle \frac{(4x^2y^2+1)(36y^2z^2+1)(9x^2z^2+1)}{2304x^2y^2z^2}\geq \frac{1}{(x+2y+3z)^2}\right)$
- Refinement on Dan Sitaru's Cyclic Inequality In Three Variables $\left(\displaystyle \frac{(4x^2y^2+1)(36y^2z^2+1)(9x^2z^2+1)}{2304x^2y^2z^2}\geq \frac{1}{3\sqrt{3}}\right)$
- An Inequality with Arbitrary Roots $\left(\displaystyle \sum_{cycl}\left(\sqrt[n]{a+\sqrt[n]{a}}+\sqrt[n]{a-\sqrt[n]{a}}\right)\lt 18\right)$
- Leo Giugiuc's Inequality with Constraint $\left(\displaystyle 2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\le ab+bc+ca\right)$
- Problem From the 2016 IMO Shortlist $\left(\displaystyle \sqrt[3]{(a^2+1)(b^2+1)(c^2+1)}\le\left(\frac{a+b+c}{3}\right)^2+1\right)$
- Dan Sitaru's Cyclic Inequality with a Constraint and Cube Roots $\left(\displaystyle \sum_{cycl}\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\le\frac{4}{5}\right)$
- Dan Sitaru's Cyclic Inequality with a Constraint and Cube Roots II $\left(\displaystyle \sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}+\sqrt[3]{d}\le\sqrt[3]{abcd}\right)$
- A Simplified Version of Leo Giugiuc's Inequality from the AMM $\left(\displaystyle a^3+b^3+c^3\ge 3\right)$
- Kunihiko Chikaya's Inequality $\displaystyle \small{\left(\frac{(a^{10}-b^{10})(b^{10}-c^{10})(c^{10}-a^{10})}{(a^{9}+b^{9})(b^{9}+c^{9})(c^{9}+a^{9})}\ge\frac{125}{3}[(a-b)^3+(b-c)^3+(c-a)^3]\right)}$
- A Cyclic Inequality on [-1,1] $\left(xy+yz+zx\ge 1\right)$
- An Inequality with Two Triples of Variables $\left(\displaystyle\sum_{cycl}ux\ge\sqrt{\left(\sum_{cycl}xy\right)\left(2\sum_{cycl}uv-\sum_{cycl}u^2\right)}\right)$
- 6th European Mathematical Cup (2017), Junior Problem 4 $\left(x^3 - (y^2 + yz + z^2)x + y^2z + yz^2 \le 3\sqrt{3}\right)$
- Dorin Marghidanu's Example $\left(\displaystyle\frac{\displaystyle\frac{1}{b_1}+\frac{2}{b_2}+\frac{3}{b_3}}{1+2+3}\ge\frac{1+2+3}{b_1+2b_2+3b_3}\right)$
- A Trigonometric Inequality with Ordered Triple of Variables $\left((x+y)\sin x+(x-z)\sin y\lt (y+z)\sin x\right)$
- Three Variables, Three Constraints, Two Inequalities (Only One to Prove) - by Leo Giugiuc $\bigg(a+b+c=0$ and $a^2+b^2+c^2\ge 2$ Prove that $abc\ge 0\bigg)$
- Hung Nguyen Viet's Inequality with a Constraint $\left(1+2(xy+yz+zx)^2\ge (x^3+y^3+z^3+6xyz)^2\right)$
- A Cyclic Inequality by Seyran Ibrahimov $\left(\displaystyle \sum_{cycl}\frac{x}{y^4+y^2z^2+z^4}\le\frac{1}{(xyz)^2}\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints V $\left(\displaystyle \frac{1}{\sqrt{ab(a+b)}}+\frac{1}{\sqrt{bc(b+c)}}+\frac{1}{\sqrt{ca(c+a)}}\le 3+\frac{a+b+c}{abc}\right)$
- Cyclic Inequality In Three Variables From Kvant $\left(\displaystyle \frac{a}{bc+1}+\frac{b}{ca+1}+\frac{c}{ab+1}\le 2\right)$
- Cyclic Inequality In Three Variables From Vietnam by Rearrangement $\left(\displaystyle \frac{x^3+y^3}{y^2+z^2}+\frac{y^3+z^3}{z^2+x^2}+\frac{z^3+x^3}{x^2+y^2}\le 3\right)$
- A Few Variants of a Popular Inequality And a Generalization $\left(\displaystyle \frac{1}{(a+b)^2+4}+\frac{1}{(b+c)^2+4}+\frac{1}{(c+a)^2+4}\le \frac{3}{8}\right)$
- Two Constraints, One Inequality by Qing Song $\left(|a|+|b|+|c|\ge 6\right)$
- A Moscow Olympiad Question with Two Inequalities $\left(\displaystyle b^2\gt 4ac\right)$ A Problem form the Short List of the 2018 JBMO $\left(ab^3+bc^3+cd^3+da^3\ge a^2b^2+b^2c^2+c^2d^2+d^2a^2\right)$
- An Inequality from a Mongolian Exam $\left(\displaystyle 2\sum_{i=1}^{2n-1}(x_i-A)^2\ge \sum_{i=1}^{2n-1}(x_i-x_n)^2\right)$
|Contact| |Up| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny71930609