# An Inequality with Constraint VII

### Problem

Dan Sitaru has kindly posted a problem from his book "Liquid Math" at the CutTheKnotMath facebook page:

If $x,y,z\in\mathbb{R},\;$ $x+y-5z=0,\;$ $x^2+z^2=1.\;$ Then

$|2x+3y-5z|\le\sqrt{101}.$

### Solution

Since $x+y-5z=0,\;$ the inequality at hand is equivalent to

$|(2x+3y-5z)-3(x+y-5z)|=|-x+10z|\le\sqrt{101}.$

This is the one I shall prove under the restriction $x^2+z^2=1.\;$ After the fact, $y\;$ may be found from $x+y-5z=0.$

The straight lines $-x+10z=\text{const}\;$ may or may not meet the circle $x^2+z^2=1.\;$

I shall employ geometric illustration. The value of $-x+10z\;$ which is constant on each of the lines changing monotonically in the direction of their common normal: $(-10,1).$ The extreme values are attained at the intersection of $x^2+z^2=1\;$ with $z=-10x:$

This happens when $\displaystyle x=\pm\frac{1}{\sqrt{101}},\;$ $z=\displaystyle\mp\frac{10}{\sqrt{101}}$ such that, at these points, $|-x+10z|=\sqrt{101},\;$ which proves the required inequality.

- A Cyclic But Not Symmetric Inequality in Four Variables
- An Inequality with Constraint
- An Inequality with Constraints II
- An Inequality with Constraint III
- An Inequality with Constraint IV
- An Inequality with Constraint VII
- An Inequality with Constraint VIII
- An Inequality with Constraint IX
- An Inequality with Constraint X
- Problem 11804 from the AMM
- Sladjan Stankovik's Inequality With Constraint
- An Inequality with Constraint XII
- An Inequality with Constraint XIV
- An Inequality with Constraint XVII
- An Inequality with Constraint in Four Variables II
- An Inequality with Constraint in Four Variables III
- An Inequality with Constraint in Four Variables V
- An Inequality with Constraint in Four Variables VI
- A Cyclic Inequality in Three Variables with Constraint
- Dorin Marghidanu's Cyclic Inequality with Constraint
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints II
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints III
- Inequality with Constraint from Dan Sitaru's Math Phenomenon
- Another Problem from the 2016 Danubius Contest
- Gireaux's Theorem
- An Inequality with a Parameter and a Constraint
- Unsolved Problem from Crux Solved
- An Inequality With Six Variables and Constraints
- Cubes Constrained
- Dorin Marghidanu's Inequality with Constraint
- Dan Sitaru's Integral Inequality with Powers of a Function
- Michael Rozenberg's Inequality in Three Variables with Constraints
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints IV
- An Inequality with Arbitrary Roots
- Leo Giugiuc's Inequality with Constraint
- Problem From the 2016 IMO Shortlist
- Dan Sitaru's Cyclic Inequality with a Constraint and Cube Roots
- Dan Sitaru's Cyclic Inequality with a Constraint and Cube Roots II
- A Simplified Version of Leo Giugiuc's Inequality from the AMM
- Kunihiko Chikaya's Inequality $\displaystyle \small{\left(\frac{(a^{10}-b^{10})(b^{10}-c^{10})(c^{10}-a^{10})}{(a^{9}+b^{9})(b^{9}+c^{9})(c^{9}+a^{9})}\ge\frac{125}{3}[(a-b)^3+(b-c)^3+(c-a)^3]\right)}$

|Contact| |Front page| |Contents| |Algebra|

Copyright © 1996-2017 Alexander Bogomolny62686961 |