# A Cyclic Inequality in Three Variables with Constraint

### Problem

### Solution

In any triangle $ABC,\,$ $A+B+C=\pi\,$ and

$\displaystyle\cos^2A+\cos^2B+\cos^2C+2\cos A\cos B\cos C=1.$

Let's find $A,B,C\,$ such that $a\sqrt{bc}=\cos^2A,\,$ $b\sqrt{ca}=\cos^2B,\,$ $c\sqrt{ab}=\cos^2C.\,$ Assuming this done, $abc=\cos A\cos B\cos C\gt 0\,$ (so that, if $\Delta ABC\,$ exists, it is acute.) We can then find

$\displaystyle\begin{align} a &=\frac{\cos^3 A}{\cos B\cos C}\gt 0,\\ b &=\frac{\cos^3 B}{\cos C\cos A}\gt 0,\\ c &=\frac{\cos^3 C}{\cos A\cos B}\gt 0 \end{align}$

It is directly verified that these $a,b,c\,$ satisfy the constraint. The required inequality reduces to

$\displaystyle\prod_{cycl}\frac{\cos^2B\cos^2C}{\cos^2A}\ge 2\prod_{cycl}\frac{\cos^3A}{\cos B\cos C}.$

In any $\Delta ABC,\,$ with positive $x,y,z,\,$

$x^2+y^2+z^2\ge 2xy\cos C+2yz\cos A+2zx\cos B.$

Taking, $x=\displaystyle\frac{\cos B\cos C}{\cos^2A},\,$ $y=\displaystyle\frac{\cos C\cos A}{\cos^2B},\,$ $z=\displaystyle\frac{\cos A\cos B}{\cos^2C},\,$ we exactly get

$\displaystyle\sum_{cycl}\frac{\cos^2B\cos^2C}{\cos^4A}\ge 2\sum_{cycl}\frac{\cos B\cos C}{\cos^2A}\frac{\cos C\cos A}{\cos^2B}\cos C=2\sum_{cycl}\frac{\cos^3C}{\cos A\cos B}.$

### Acknowledgment

Dan Sitaru has kindly posted the above problem (from the Romanian Mathematical Magazine, #JP033) at the CutTheKnotMath facebook page. The problem is due to Nguyen Viet Hung; Solution is by Kevin Soto Palacios.

- A Cyclic But Not Symmetric Inequality in Four Variables
- An Inequality with Constraint
- An Inequality with Constraints II
- An Inequality with Constraint III
- An Inequality with Constraint IV
- An Inequality with Constraint VII
- An Inequality with Constraint VIII
- An Inequality with Constraint IX
- An Inequality with Constraint X
- Problem 11804 from the AMM
- Sladjan Stankovik's Inequality With Constraint
- An Inequality with Constraint XII
- An Inequality with Constraint XIV
- An Inequality with Constraint XVII
- An Inequality with Constraint in Four Variables II
- An Inequality with Constraint in Four Variables III
- An Inequality with Constraint in Four Variables V
- An Inequality with Constraint in Four Variables VI
- A Cyclic Inequality in Three Variables with Constraint
- Dorin Marghidanu's Cyclic Inequality with Constraint
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints II
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints III
- Inequality with Constraint from Dan Sitaru's Math Phenomenon
- Another Problem from the 2016 Danubius Contest
- Gireaux's Theorem
- An Inequality with a Parameter and a Constraint
- Unsolved Problem from Crux Solved
- An Inequality With Six Variables and Constraints
- Cubes Constrained
- Dorin Marghidanu's Inequality with Constraint
- Dan Sitaru's Integral Inequality with Powers of a Function
- Michael Rozenberg's Inequality in Three Variables with Constraints
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints IV
- An Inequality with Arbitrary Roots
- Leo Giugiuc's Inequality with Constraint
- Problem From the 2016 IMO Shortlist
- Dan Sitaru's Cyclic Inequality with a Constraint and Cube Roots
- Dan Sitaru's Cyclic Inequality with a Constraint and Cube Roots II
- A Simplified Version of Leo Giugiuc's Inequality from the AMM
- Kunihiko Chikaya's Inequality $\displaystyle \small{\left(\frac{(a^{10}-b^{10})(b^{10}-c^{10})(c^{10}-a^{10})}{(a^{9}+b^{9})(b^{9}+c^{9})(c^{9}+a^{9})}\ge\frac{125}{3}[(a-b)^3+(b-c)^3+(c-a)^3]\right)}$

|Contact| |Front page| |Contents| |Algebra|

Copyright © 1996-2017 Alexander Bogomolny62610130 |