Unsolved Problem from Crux Solved
Problem
Solution 1
We use the method of Lagrange multipliers. Let
$\displaystyle\begin{align} L(a_1,a_2,...,a_6,\lambda,\mu)=&a_1a_2...a_6-\lambda\left(a_1+a_2+...+a_6 -\frac{15}{2}\right) \\ &-\mu\left(a_1^2+a_2^2+...+a_6^2-\frac{45}{4}\right). \end{align}$
Setting the partial derivatives to $0$, we get the original constraints and for all $i's$,
$\displaystyle a_1a_2...a_6-\lambda a_i -2\mu a_i^2 = 0$
for the critical points. Subtracting one such equation from another (for different $i's$),
$\displaystyle (a_i-a_j)(\lambda + 2\mu (a_i+a_j))=0.$
Thus, either $a_i=a_j$ or $a_i+a_j$ is constant. Moreover, whenever the sum is a constant, the constant does not depend on the values of $i$ and $j$. This implies the all the $a_i's$ can only take one of two possible values. Let the two values be $p$ and $q$. All the $a_i's$ have been partitioned into two equivalence classes with the classes identified by the value $a_i$ in a class takes. We can rule out the case of all $a_i's$ being in the same class by noting that the two constraints cannot be simultaneously satisfied in that case. So we are left with the following three combinations to look at: $(1,5)$, $(2,4)$, and $(3,3)$. The brackets indicate the number of $a_i's$ in each of the classes. Other cases are symmetrical.
Case 1:
$\displaystyle\begin{align} p+5q\,&=\frac{15}{2} \\ p^2+5q^2&=\frac{45}{4} \\ \end{align}$
Thus, $p=0, q=3/2$ and $\prod a_i=0$; or $p=5/2, q=1$ and $\prod a_i=pq^5=5/2$.
Case 2:
$\displaystyle\begin{align} 2p+4q\,&=\frac{15}{2} \\ 2p^2+4q^2&=\frac{45}{4} \\ \end{align}$
Thus, $p=(5-\sqrt{10})/4, q=(10+\sqrt{10})/8$ and $\prod a_i=p^2q^4\sim 1.547 \lt 5/2$; or $p=(5+\sqrt{10})/4, q=(10-\sqrt{10})/8$ and $\prod a_i=p^2q^4\sim 2.222 \lt 5/2$.
Case 3:
$\displaystyle\begin{align} p+q&=\frac{5}{2} \\ p^2+q^2&=\frac{15}{4} \\ \end{align}$
Thus, $p=(5-\sqrt{5})/4, q=(5+\sqrt{5})/4$ and $\prod a_i=p^3q^3=125/64 \lt 5/2$; or $p=(5+\sqrt{5})/4, q=(5-\sqrt{5})/4$ (same product).
All the critical points give products smaller than or equal to $5/2$. The critical point where the product has a maximum vale of $5/2$ is when one of the $a'i$ has value $5/2$ and all others have value $1$. Clearly, there are $6$ permutations embedded in this solution.
Solution 2
We have $\displaystyle a_1+a_2+a_3+a_4+a_5=\frac{15}{2}-a_6\,$ and $\displaystyle a_1^2+a_2^2+a_3^2+a_4^2+a_5^2=\frac{45}{4}-a_6^2.\,$ The function $g:\,\mathbb{R}\to\mathbb{R},\,$ $g(x)=x^2,\,$ is convex and, by Jensen's inequality,
$5(a_1^2+a_2^2+a_3^2+a_4^2+a_5^2)\ge (a_1+a_2+a_3+a_4+a_5)^2,$
implying $\displaystyle 5\left(\frac{45}{6}-a_6^2\right)\ge\left(\frac{15}{2}-a_6\right)^2,\,$ so that $\displaystyle a_6^2-\frac{5}{2}a_6\le 0,\,$ i.e., $a_6\in\left[0,\frac{5}{2}\right].\,$ By analogy, $\{a_1,a_2,a_3,a_4,a_5,a_6\}\subset\left[0,\frac{5}{2}\right].$
If one of $a_i$'s is zero, the whole product vanishes and there's nothing to prove. We, thus, shall assume $\{a_1,a_2,a_3,a_4,a_5,a_6\}\subset\left(0,\frac{5}{2}\right].\,$ We have
$\displaystyle \sum_{1\le i\lt j\le 6}a_ia_j =\frac{1}{2}\left[\left(\sum_{i=1}^6a_i\right)^2-\sum_{i=1}^6a_i^2\right]$
so that $\displaystyle\sum_{1\le i\lt j\le 6}a_ia_j=\frac{45}{2}.\,$ We consider the polynomial $P:\,\mathbb{R}\to\mathbb{R},\,$ $P(x)=\displaystyle \prod_{i=1}^6(x-a_i).\,$ There are positive numbers $m,\,$ $n\,$ and $q\,$ such that
$\displaystyle P(x)=x^6-\frac{15}{2}x^5+\frac{45}{2}x^4-mx^3+nx^2-qx+p,$
where $p=a_1a_2a_3a_4a_5a_6.\,$ Now consider the function $f:\,(0,\infty)\to\mathbb{R},\,$ $\displaystyle f(x)=\frac{P(x)}{x}.\,$ Obviously, since $p\ne 0,\,$ the roots of $f\,$ are $a_i,\,$ $i=1,\ldots,6.\,$ By Rolle's theorem, the third derivative $f^{(3)}(x)\,$ of $f\,$ has at least three positive roots. But $\displaystyle f^{(3)}(x)=3\cdot\frac{20x^6-60x^5+45x^4-2p}{x^4},\,$ for $x\gt 0.$
Now, let $Q:\,(0,\infty)\to\mathbb{R},\,$ $Q(x)=20x^6-60x^5+45x^4-2p.\,$ Obviously, $f^{(3)}(x)=0\,$ iff $Q(x)=0.\,$ Let's study the variation of $Q(x)\,$ on $(0,\infty).
We have $Q'(x)=60x^3(x-1)(2x-3),\,$ which implies that $Q\,$ is strictly increasing on $(0,1],\,$ strictly decreasing on $\displaystyle \left[1,\frac{3}{2}\right],$ and again strictly increasing on $\displaystyle\left[\frac{3}{2},\infty\right).$
Observe that $Q(0_{+})=-2p\lt 0,\,$ $Q(\infty)=\infty\gt 0.\,$ Now,since $Q\,$ is known to have at least three positive roots, Rolle's theorem implies that $Q(1)\ge 0\,$ and $\displaystyle Q\left(\frac{3}{2}\right)\le 0.$
From $Q(1)\ge 0\,$ it follows that $\displaystyle p\le\frac{5}{2},\,$ i.e., $a_1a_2a_3a_4a_5a_6\le\displaystyle \frac{5}{2}.$
Note that, for $a_1=a_2=a_3=a_4=a_5=1\,$ and $\displaystyle a_6=\frac{5}{2},\,$ we have
$\displaystyle \begin{align} &a_1+a_2+a_3+a_4+a_5+a_6=\frac{15}{2},\\ &a_1^2+a_2^2+a_3^2+a_4^2+a_5^2+a_6^2=\frac{45}{4},\\ &a_1a_2a_3a_4a_5a_6=\frac{5}{2}. \end{align}$
Acknowledgment
Leo Giugiuc has posted this problem at the CutTheKnotMath facebook page with a comment to the effect that the problem has been published at the Crux Mathematicorum a year ago and during that time no solution has been submitted.
The above solution is due to Amit Itagi; Faryad D. Sahneh came up independently with practically the same solution.
Leo Giugiuc - the author of the problem - has kindly supplied his original solution (Solution 2).
- A Cyclic But Not Symmetric Inequality in Four Variables $\left(\displaystyle 5(a+b+c+d)+\frac{26}{abc+bcd+cda+dab}\ge 26.5\right)$
- An Inequality with Constraint $\left((x+1)(y+1)(z+1)\ge 4xyz\right)$
- An Inequality with Constraints II $\left(\displaystyle abc+\frac{2}{ab+bc+ca}\ge\frac{5}{a^2+b^2+c^2}\right)$
- An Inequality with Constraint III $\left(\displaystyle \frac{x^3}{y^2}+\frac{y^3}{z^2}+\frac{z^3}{x^2}\ge 3\right)$
- An Inequality with Constraint IV $\left(\displaystyle\sum_{k=1}^{n}\sqrt{x_k}\ge (n-1)\sum_{k=1}^{n}\frac{1}{\sqrt{x_k}}\right)$
- An Inequality with Constraint VII $\left(|(2x+3y-5z)-3(x+y-5z)|=|-x+10z|\le\sqrt{101}\right)$
- An Inequality with Constraint VIII $\left(\sqrt{24a+1}+\sqrt{24b+1}+\sqrt{24c+1}\ge 15\right)$
- An Inequality with Constraint IX $\left(x^2+y^2\ge x+y\right)$
- An Inequality with Constraint X $\left((x+y+p+q)-(x+y)(p+q)\ge 1\right)$
- Problem 11804 from the AMM $\left(10|x^3 + y^3 + z^3 - 1| \le 9|x^5 + y^5 + z^5 - 1|\right)$
- Sladjan Stankovik's Inequality With Constraint $\left(abc+bcd+cda+dab-abcd\le\displaystyle \frac{27}{16}\right)$
- An Inequality with Constraint XII $\left(abcd\ge ab+bc+cd+da+ac+bd-5\right)$
- An Inequality with Constraint XIV $\left(\small{64(a^2+ab+b^2)(b^2+bc+c^2)(c^2+ca+a^2) \le 3(a+b+c)^6}\right)$
- An Inequality with Constraint XVII $\left(a^3+b^3+c^3\ge 0\right)$
- An Inequality with Constraint in Four Variables II $\left(a^3+b^3+c^3+d^3 + 6abcd \ge 10\right)$
- An Inequality with Constraint in Four Variables III $\left(\displaystyle\small{abcd+\frac{15}{2(ab+ac+ad+bc+bd+cd)}\ge\frac{9}{a^2+b^2+c^2+d^2}}\right)$
- An Inequality with Constraint in Four Variables V $\left(\displaystyle 5\sum \frac{abc}{\sqrt[3]{(1+a^3)(1+b^3)(1+c^3)}}\leq 4\right)$
- An Inequality with Constraint in Four Variables VI $\left(\displaystyle \sum_{cycl}a^2+6\cdot\frac{\displaystyle \sum_{cycl}abc}{\displaystyle \sum_{cycl}a}\ge\frac{5}{3}\sum_{sym}ab\right)$
- A Cyclic Inequality in Three Variables with Constraint $\left(\displaystyle a\sqrt{bc}+b\sqrt{ca}+c\sqrt{ab}+2abc=1\right)$
- Dorin Marghidanu's Cyclic Inequality with Constraint $\left(\displaystyle 2a^2-2\sqrt{2}(b+c)a+3b^2+4c^2-2\sqrt{bc}\gt 0\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints $\left(\displaystyle \frac{1}{\sqrt{a+b^2}}+ \frac{1}{\sqrt{b+c^2}}+ \frac{1}{\sqrt{c+a^2}}\ge\frac{1}{\sqrt{a+b+c}}\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints II $\left(\displaystyle \sum_{cycl}\frac{\displaystyle \frac{x}{y}+1+\frac{y}{x}}{\displaystyle \frac{1}{x}+\frac{1}{y}}\le 9\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints III $\left(\displaystyle 12+\sum_{cycl}\left(\sqrt{\frac{x^3}{y}}+\sqrt{\frac{x^3}{y}}\right)\ge 8(x+y+z)\right)$
- Inequality with Constraint from Dan Sitaru's Math Phenomenon $\left(\displaystyle b+2a+20\ge 2\sum_{cycl}\frac{a^2+ab+b^2}{a+b}\ge b+2c+20\right)$
- Another Problem from the 2016 Danubius Contest $\left(\displaystyle \frac{1}{a^2+2}+\frac{1}{b^2+2}+\frac{1}{c^2+2}\le 1\right)$
- Gireaux's Theorem (If a continuous function of several variables is defined on a hyperbrick and is convex in each of the variables, it attains its maximum at one of the corners)
- An Inequality with a Parameter and a Constraint $\left(\displaystyle a^4+b^4+c^4+\lambda abc\le\frac{\lambda +1}{27}\right)$
- Unsolved Problem from Crux Solved
- An Inequality With Six Variables and Constraints Find the range of $\left(a^2+b^2+c^2+d^2+e^2+f^2\right)$
- Cubes Constrained $\left(3(a^4+b^4)+2a^4b^4\le 8\right)$
- Dorin Marghidanu's Inequality with Constraint $\left(\displaystyle \frac{1}{a_1+1}+\frac{2}{2a_2+1}+\frac{3}{3a_3+1}\ge 4\right)$
- Dan Sitaru's Integral Inequality with Powers of a Function $\left(\displaystyle\left(\int_0^1f^5(x)dx\right)\left(\int_0^1f^7(x)dx\right)\left(\int_0^1f^9(x)dx\right)\ge 2\right)$
- Michael Rozenberg's Inequality in Three Variables with Constraints $\left(\displaystyle 4\sum_{cycl}ab(a^2+b^2)\ge\sum_{cycl}a^4+5\sum_{cycl}a^2b^2+2abc\sum_{cycl}a\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints IV $\left(\displaystyle \frac{(4x^2y^2+1)(36y^2z^2+1)(9x^2z^2+1)}{2304x^2y^2z^2}\geq \frac{1}{(x+2y+3z)^2}\right)$
- Refinement on Dan Sitaru's Cyclic Inequality In Three Variables $\left(\displaystyle \frac{(4x^2y^2+1)(36y^2z^2+1)(9x^2z^2+1)}{2304x^2y^2z^2}\geq \frac{1}{3\sqrt{3}}\right)$
- An Inequality with Arbitrary Roots $\left(\displaystyle \sum_{cycl}\left(\sqrt[n]{a+\sqrt[n]{a}}+\sqrt[n]{a-\sqrt[n]{a}}\right)\lt 18\right)$
- Leo Giugiuc's Inequality with Constraint $\left(\displaystyle 2\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\le ab+bc+ca\right)$
- Problem From the 2016 IMO Shortlist $\left(\displaystyle \sqrt[3]{(a^2+1)(b^2+1)(c^2+1)}\le\left(\frac{a+b+c}{3}\right)^2+1\right)$
- Dan Sitaru's Cyclic Inequality with a Constraint and Cube Roots $\left(\displaystyle \sum_{cycl}\sqrt[3]{\frac{abc}{(a+1)(b+1)(c+1)}}\le\frac{4}{5}\right)$
- Dan Sitaru's Cyclic Inequality with a Constraint and Cube Roots II $\left(\displaystyle \sqrt[3]{a}+\sqrt[3]{b}+\sqrt[3]{c}+\sqrt[3]{d}\le\sqrt[3]{abcd}\right)$
- A Simplified Version of Leo Giugiuc's Inequality from the AMM $\left(\displaystyle a^3+b^3+c^3\ge 3\right)$
- Kunihiko Chikaya's Inequality $\displaystyle \small{\left(\frac{(a^{10}-b^{10})(b^{10}-c^{10})(c^{10}-a^{10})}{(a^{9}+b^{9})(b^{9}+c^{9})(c^{9}+a^{9})}\ge\frac{125}{3}[(a-b)^3+(b-c)^3+(c-a)^3]\right)}$
- A Cyclic Inequality on [-1,1] $\left(xy+yz+zx\ge 1\right)$
- An Inequality with Two Triples of Variables $\left(\displaystyle\sum_{cycl}ux\ge\sqrt{\left(\sum_{cycl}xy\right)\left(2\sum_{cycl}uv-\sum_{cycl}u^2\right)}\right)$
- 6th European Mathematical Cup (2017), Junior Problem 4 $\left(x^3 - (y^2 + yz + z^2)x + y^2z + yz^2 \le 3\sqrt{3}\right)$
- Dorin Marghidanu's Example $\left(\displaystyle\frac{\displaystyle\frac{1}{b_1}+\frac{2}{b_2}+\frac{3}{b_3}}{1+2+3}\ge\frac{1+2+3}{b_1+2b_2+3b_3}\right)$
- A Trigonometric Inequality with Ordered Triple of Variables $\left((x+y)\sin x+(x-z)\sin y\lt (y+z)\sin x\right)$
- Three Variables, Three Constraints, Two Inequalities (Only One to Prove) - by Leo Giugiuc $\bigg(a+b+c=0$ and $a^2+b^2+c^2\ge 2$ Prove that $abc\ge 0\bigg)$
- Hung Nguyen Viet's Inequality with a Constraint $\left(1+2(xy+yz+zx)^2\ge (x^3+y^3+z^3+6xyz)^2\right)$
- A Cyclic Inequality by Seyran Ibrahimov $\left(\displaystyle \sum_{cycl}\frac{x}{y^4+y^2z^2+z^4}\le\frac{1}{(xyz)^2}\right)$
- Dan Sitaru's Cyclic Inequality In Three Variables with Constraints V $\left(\displaystyle \frac{1}{\sqrt{ab(a+b)}}+\frac{1}{\sqrt{bc(b+c)}}+\frac{1}{\sqrt{ca(c+a)}}\le 3+\frac{a+b+c}{abc}\right)$
- Cyclic Inequality In Three Variables From Kvant $\left(\displaystyle \frac{a}{bc+1}+\frac{b}{ca+1}+\frac{c}{ab+1}\le 2\right)$
- Cyclic Inequality In Three Variables From Vietnam by Rearrangement $\left(\displaystyle \frac{x^3+y^3}{y^2+z^2}+\frac{y^3+z^3}{z^2+x^2}+\frac{z^3+x^3}{x^2+y^2}\le 3\right)$
- A Few Variants of a Popular Inequality And a Generalization $\left(\displaystyle \frac{1}{(a+b)^2+4}+\frac{1}{(b+c)^2+4}+\frac{1}{(c+a)^2+4}\le \frac{3}{8}\right)$
- Two Constraints, One Inequality by Qing Song $\left(|a|+|b|+|c|\ge 6\right)$
- A Moscow Olympiad Question with Two Inequalities $\left(\displaystyle b^2\gt 4ac\right)$ A Problem form the Short List of the 2018 JBMO $\left(ab^3+bc^3+cd^3+da^3\ge a^2b^2+b^2c^2+c^2d^2+d^2a^2\right)$
- An Inequality from a Mongolian Exam $\left(\displaystyle 2\sum_{i=1}^{2n-1}(x_i-A)^2\ge \sum_{i=1}^{2n-1}(x_i-x_n)^2\right)$
|Contact| |Up| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny72106464