An Inequality with Just Two Variables III
Problem
Solution 1
In a right triangle with sides $a,b,\sqrt{a^2+b^2},\$ let $\theta be the acute angle opposite $a:\,$ $a=\sqrt{a^2+b^2}\sin\theta,\,$ $a:\,$ $b=\sqrt{a^2+b^2}\cos\theta.\,$ Then
$\displaystyle LHS=\frac{1}{\sqrt{2}}\tan\theta+\sqrt{2}\cot\theta+2\cos\theta+2\sec\theta\overset{def}{=}f(\theta).$
Solving
$\displaystyle f'(\theta)=\frac{1}{\sqrt{2}\cos^2\theta}-\sqrt{2}\frac{1}{\sin^2\theta}-2\sin\theta+\frac{2\sin\theta}{cos^2\theta}=0.$
we get successively
$\displaystyle\frac{\sin^2\theta-2\,\cos^2\theta}{\sqrt{2}\cos^2\theta\,\sin^2\theta}-2\sin\theta\frac{\cos^2\theta-1}{\cos\theta}=0,$
$\displaystyle\frac{3\,\sin^2\theta-2}{\sqrt{2}\,\cos^2\theta\,\sin^2\theta}+2\frac{\sin^3\theta}{\cos\theta}=0,$
$\displaystyle \frac{2-3\,\sin^2\theta}{\sqrt{2}\,\cos^2\theta\,\sin^2\theta}=2\frac{\sin^3\theta}{\cos\theta},$
$\displaystyle 2-3\,\sin^2\theta=2\sqrt{2}\,\sin^5\theta,$
$\displaystyle 4+9\,\sin^4\theta -12\,\sin^2\theta=8\,\sin^10\theta.$
With $t=\sin^2\theta\gt 0,$
$\displaystyle 8t^5-9t^4+12t-4=0,$
$\displaystyle (2t-1)(4t^4+2t^3+(t-2)^2=0,$
$t=\displaystyle\frac{1}{2},\,$ $\sin\theta=\displaystyle\frac{\sqrt{2}}{2},\,$ $\displaystyle\theta=\frac{\pi}{4}.$
Now,
$\displaystyle\begin{align} f''(\theta)=\sqrt{2}\,\sec^2\theta\,\tan\theta+2\sqrt{2}\,\frac{\cot\theta}{\sin^2\theta}-2\,\cos\theta+2\,\sec^3\theta+2\,\tan^2\theta\,\sec\theta. \end{align}$
$\displaystyle f''\left(\frac{\pi}{4}\right)=11\sqrt{2}>0,\,$ implying that $\displaystyle\theta=\frac{\pi}{4}$ is a minimum and that $f\,$ never attends a maximum on $\displaystyle\left(0,\frac{\pi}{2}\right).\,$ Hence,
$\displaystyle f(\theta)\ge f\left(\frac{\pi}{2}\right)=4\sqrt{2}+\frac{1}{\sqrt{2}}=\frac{9\sqrt{2}}{2}.$
Solution 2
Note that $a\sin x+b\cos x\le\sqrt{a^2+b^2}\,$ so that
$\displaystyle\frac{a\sin x}{\sqrt{a^2+b^2}}+\frac{b\cos x}{\sqrt{a^2+b^2}}\le 1,$
with equality only when $a=\sqrt{a^2+b^2}\sin x,\,$ $b=\sqrt{a^2+b^2}\cos x,\,$ $x\in\displaystyle\left(0,\frac{pi}{2}\right).\,$ The given inequality is equivalent to
$\displaystyle f(x)=\frac{1}{\sqrt{2}}\tan x+\sqrt{2}\cot x +\frac{2}{\cos x}+2\,\cos x\ge\frac{9\sqrt{2}}{2}.$
Where's $f(x)=0?
$\displaystyle f'(x)=\frac{1}{\sqrt{2}\,\cos^2 x}+\frac{\sqrt{2}}{\sin^2 x} -\frac{2\,\sin x}{\cos^2 x}-2\,\sin x=0,\,$
or, $(2\sqrt{2}\sin^3x-1)(\cos^2x+1).\,$ $(2\sqrt{2}\sin^3x-1)=0\,$ implies $x=\displaystyle\frac{\pi}{4}.\,$ $\displaystyle f\left(\frac{\pi}{4}\right)=\frac{9\sqrt{2}}{2}.$
Solution 3
Using the AM-GM inequality,
$\displaystyle\begin{align} 3&\cdot\frac{\displaystyle\frac{a}{b\sqrt{2}}+\frac{b}{\sqrt{a^2+b^2}}+\frac{b}{\sqrt{a^2+b^2}}}{3}+3\cdot\frac{\displaystyle\frac{b\sqrt{2}}{a}+\frac{\sqrt{a^2+b^2}}{b}+\frac{\sqrt{a^2+b^2}}{b}}{3}\\ &\qquad=3\left(\frac{ab}{\sqrt{2}(a^2+b^2)}\right)^{\frac{1}{3}}+6\left(\frac{\sqrt{2}(a^2+b^2)}{8ab}\right)^{\frac{1}{3}}\\ &\qquad=3\cdot 3\cdot\frac{\displaystyle\left(\frac{ab}{\sqrt{2}(a^2+b^2)}\right)^{\frac{1}{3}}+\left(\frac{\sqrt{2}(a^2+b^2)}{8ab}\right)^{\frac{1}{3}}+\left(\frac{\sqrt{2}(a^2+b^2)}{8ab}\right)^{\frac{1}{3}}}{3}\\ &\qquad\ge 9\cdot\left[\left(\frac{ab}{\sqrt{2}(a^2+b^2)}\right)^{\frac{1}{3}}\left(\frac{\sqrt{2}(a^2+b^2)}{8ab}\right)^{\frac{2}{3}}\right]^{\frac{1}{3}}\\ &\qquad =9\cdot\left[\left(\frac{a^2+b^2}{ab}\right)^{\frac{1}{3}}\cdot\left(\sqrt{2}\right)^{\frac{2}{3}-\frac{1}{3}-4}\right]^{\frac{1}{3}}\\ &\qquad\ge 9\cdot\left[2^{\frac{1}{3}}\cdot (\sqrt{2})^{\frac{1}{3}-4}\right]^{\frac{1}{3}}\quad\left(\text{because}\,\frac{a^2+b^2}{2}\ge ab\right)\\ &\qquad = 9\cdot\left[(\sqrt{2})^{\frac{2}{3}+\frac{1}{3}-4}\right]^{\frac{1}{3}}=9\cdot (\sqrt{2})^{-1}\\ &\qquad =\frac{9\sqrt{2}}{2}. \end{align}$
Solution 4
$\displaystyle\begin{align} LHS &= \frac{1}{\sqrt{2}}\left(\frac{b}{a}+\frac{a}{b}\right)+2\left(\frac{\sqrt{a^2+b^2}}{b}+\frac{2b}{\sqrt{a^2+b^2}}\right)+\frac{1}{\sqrt{2}}\cdot\frac{b}{a}-\frac{2b}{\sqrt{a^2+b^2}}\\ &\ge\frac{1}{\sqrt{2}}\cdot 2+2\cdot 2\sqrt{2}+\frac{1}{\sqrt{2}}\cdot\frac{b}{a}-\frac{2b}{\sqrt{2ab}}\\ &=5\sqrt{2}+\frac{1}{\sqrt{2}}\left(\sqrt{\frac{b}{a}}-1\right)^2-\frac{1}{\sqrt{2}}\\ &\ge\frac{9}{\sqrt{2}}. \end{align}$
For equality, $\displaystyle\frac{a}{b}=\frac{b}{a}\,$ and $\displaystyle\frac{\sqrt{a^2+b^2}}{b}=\frac{2b}{\sqrt{a^2+b^2}},\,$ implying $a=b.$
Solution 5
The inequality is homogeneous which lets us to assume, WLOG, that $a^2+b^2=4.\,$ If so, by the AM-GM inequality, $ab\le 2.\,$ The inequality becomes
$\displaystyle\begin{align} LHS&=\frac{a}{b\sqrt{2}}+\left(\frac{b\sqrt{2}}{2a}+\frac{b\sqrt{2}}{2a}\right)+\left(\frac{1}{b}+\frac{1}{b}+\frac{1}{b}+\frac{1}{b}\right)+\left(\frac{b}{2}+\frac{b}{2}\right)\\ &\overset{AM-GM}{\ge}9\sqrt[9]{ \frac{ab^4\cdot 2}{b^5\cdot a^2\cdot 16\sqrt{2}}}\overset{2\ge ab}{\ge}9\sqrt[9]{\frac{1}{16\sqrt{2}}}\\ &=\frac{9}{\sqrt{2}}. \end{align}$
Acknowledgment
The problem above has been kindly posted to the CutTheKnotMath facebook page by Dan Sitaru, along with several solutions. Solutions 1 is by Soumava Chakraborty; Solution 2 by Seyran Ibrahimov; Solution 3 is by Su Tanaya; Solution 4 is by Kunihiko Chikaya; Solution 5 is by Imad Zak.
Inequalities in Two Variables
- An Inequality with Just Two Variable $\left(\displaystyle\left(\frac{2ab}{a+b}+\sqrt{\frac{a^2+b^2}{2}}\right)\left(\frac{a+b}{2ab} + \sqrt{\frac{2}{a^2+b^2}}\right) \le \frac{(a+b)^2}{ab}\right)$
- An Inequality with Just Two Variable II $\left(\displaystyle\small{\left(\frac{2ab}{a+b}+\sqrt{ab}+\frac{a+b}{2}\right)\left(\frac{a+b}{2ab} + \frac{1}{\sqrt{ab}}+\frac{2}{a+b}\right) \le 5 +2 \left(\frac{a}{b}+\frac{b}{a}\right)}\right).$
- An Inequality with Just Two Variable III $\left(\displaystyle\frac{a}{b\sqrt{2}}+\frac{b\sqrt{2}}{a}+2\left(\frac{\sqrt{a^2+b^2}}{b}+\frac{b}{a^2+b^2}\right)\ge \frac{9\sqrt{2}}{2}\right)$
- An Inequality with Just Two Variables IV $\left(\displaystyle\frac{a+2}{a^2+a+1}+\frac{b+2}{b^2+b+1}\ge \frac{ab+2}{(ab)^2+ab+1}+1\right)$
- An Inequality with Just Two Variables V $\left(\displaystyle \left(\ln\left(\frac{1}{2a}+\frac{1}{2b}\right)\right)^{a+b}\ge \left(\ln\frac{1}{a}\right)^b\left(\ln\frac{1}{b}\right)^a\right)$
- An Inequality with Just Two Variables VI $\left(|x-y|(x+1)(y+1)\le 2\right)$
- An Inequality with Just Two Variable VII $\left(\displaystyle (x^3+y^3)^3(x^2-xy+y^2)\ge x^2y^2\sqrt{xy}(x^2+y^2)^3\right)$
- An Inequality with Just Two Variable VIII $\left(\displaystyle \frac{a^2}{b+2}+\frac{b^3}{a+2}+(2-a)b^2\le 12\right)$
- The power of substitution III: proving an inequality with two variables $\left(\displaystyle\frac{1}{\sqrt{1+a^2}}+\frac{1}{\sqrt{1+b^2}}\le\frac{2}{\sqrt{1+ab}}\right)$
- Simple Yet Uncommon Inequalities with Absolute Value $\left((|x|-|y|)^2\le |x^2-y^2|,\,|\sqrt{|x|}-\sqrt{|y|}|\le\sqrt{|x-y|}\right)$
- An Inequality with Just Two Variable And an Integer $\small{\left(\displaystyle \Bigr(\frac{a}{b^n}+\frac{b}{a^n}\Bigr)\Bigr(\frac{a^n}{b}+\frac{b^n}{a}\Bigr)\Bigr(\frac{a^n}{b^n}+\frac{b}{a}\Bigr)\Bigr(\frac{b^n}{a^n}+\frac{a}{b}\Bigr)\geq 8\left(\sqrt{\displaystyle\left(\frac{a}{b}\right)^{n-1}}+\sqrt{\displaystyle\left(\frac{b}{a}\right)^{n-1}}\right)\right)}$
- An Inequality with Exponents $\left(\displaystyle b^b\cdot e^{a+\frac{1}{a}}\ge 2e^b\right)$
- Problem 790 from Pentagon: an Inequality in Two Variables $\left(\displaystyle\ln \left|\left(\frac{2+\sin 2b}{2+\sin 2a}\right)\right|\leq \frac{2\sqrt{3}}{3}(b-a)\right)$
- An Inequality with Two Variables from Awesome Math $\left(\displaystyle \frac{6ab-b^2}{8a^2+b^2}\lt\sqrt{\frac{a}{b}}\right)$
|Contact| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny71950265