An Inequality with Just Two Variable VIII
Problem
Solution 1
Let $\displaystyle f(a,b)=\frac{a^2}{b+2}+\frac{b^3}{a+2}+(2-a)b^2.\,$ Then $f(0,0)=0;\,$ $f(a\gt 0,0)=\displaystyle \frac{a^2}{2}\le 12;\,$ $f(0,b\gt 0)=\displaystyle \frac{b^3}{2}+2b^2\le 12.\,$ Suppose $a,b\gt 0:$
If $b\le 1,\,$
$f(a,b)\le\displaystyle \frac{a^2}{a}+\frac{b^2}{b}+(2-a)=b^2+2\le 12.$
If $b\gt 1,\,$
$\displaystyle \begin{align} f(a,b)-f(0,b)&=\frac{a^2}{b+2}+\frac{b^3}{a+2}+(2-a)b^2-\left(\frac{b^3}{2}+2b^2\right)\\ &=\frac{a^2}{b+2}-ab^2-\frac{ab^3}{2(a+2)}\\ &=a\left(\frac{a}{b+2}-b^2-\frac{b^3}{2(a+2)}\right)\\ &\le a\left(1-b^2-\frac{b^3}{2(a+2)}\right)\lt 0, \end{align}$
implying that $f(a,b)\lt f(0,b)=\displaystyle \frac{b^3}{2}+2b^2\le 12.\,$
Finally, $f(a,b)\le 12,\,$ with equality if and only if $a=0\,$ and $b=2.$
Solution 2
We have
$\displaystyle \begin{align} &\frac{a^2}{b+2}+\frac{b^3}{a+2}+(2-a)b^2\le 12\,\Leftrightarrow\\ &\frac{a^2}{b+2}-4+2b^2-8+\frac{a^2}{b+2}-ab^2\le 0\,\Leftrightarrow\\ &\frac{(b-2)(b^2+2b+4)-4a}{a2}+2(b-2)(b+2)+\frac{a^2}{b+2}-ab^2\le 0\,\Leftrightarrow\\ &\frac{(b-2)(b^2+2b+4)}{a+2}+2(b-2)(b+2)+a\left(\frac{a}{b+2}-b^2-\frac{4}{a+2}\right)\le 0, \end{align}$
which is true because
$\displaystyle \frac{a}{b+2}-b^2-\frac{4}{a+2}\le\frac{a}{2}-\frac{4}{2+2}-b^2\le 0,$
because $a,b\in [0,2].\,$ Equality holds if and only if $a=0\,$ and $b=2.$
Solution 3
$\displaystyle \frac{a^2}{b+2}+\frac{b^3}{a+2}+(2-a)b^2 \leq \frac{2a}{b+2}+4+2b(2-a)$
For a fixed value of $b$, the right hand side is a linear function of $a$ with slope $2/(b+2)-2b$. The slope is non-negative when $b\in[0,\sqrt{2}-1]$ and negative when $b\in(\sqrt{2}-1,2]$.
In the regime where the slope is non-negative, $RHS\,$ attains maximum value of $4/(b+2)+4$ at $a=2$ (the largest value of $a$). This function of $b$, in turn, attains a maximum value of $6$ at $b=0$.
In the regime where the slope is negative, $RHS\,$ attains maximum value of $4+4b$ at $a=0$ (the smallest value of $a$). Clearly, this function takes a maximum value of $12$ when $b=2$ (the largest value of $b).$
Thus, $LHS \leq 12$.
Acknowledgment
This problem from his book "Algebraic Phenomenon" has been kindly posted at the CutTheKnotMath facebook page by Dan Sitaru. Solution 1 is by Redwane El Mellass; Solution 2 is by Richdad Phuc; Solution 3 is by Amit Itagi.
Inequalities in Two Variables
- An Inequality with Just Two Variable $\left(\displaystyle\left(\frac{2ab}{a+b}+\sqrt{\frac{a^2+b^2}{2}}\right)\left(\frac{a+b}{2ab} + \sqrt{\frac{2}{a^2+b^2}}\right) \le \frac{(a+b)^2}{ab}\right)$
- An Inequality with Just Two Variable II $\left(\displaystyle\small{\left(\frac{2ab}{a+b}+\sqrt{ab}+\frac{a+b}{2}\right)\left(\frac{a+b}{2ab} + \frac{1}{\sqrt{ab}}+\frac{2}{a+b}\right) \le 5 +2 \left(\frac{a}{b}+\frac{b}{a}\right)}\right).$
- An Inequality with Just Two Variable III $\left(\displaystyle\frac{a}{b\sqrt{2}}+\frac{b\sqrt{2}}{a}+2\left(\frac{\sqrt{a^2+b^2}}{b}+\frac{b}{a^2+b^2}\right)\ge \frac{9\sqrt{2}}{2}\right)$
- An Inequality with Just Two Variables IV $\left(\displaystyle\frac{a+2}{a^2+a+1}+\frac{b+2}{b^2+b+1}\ge \frac{ab+2}{(ab)^2+ab+1}+1\right)$
- An Inequality with Just Two Variables V $\left(\displaystyle \left(\ln\left(\frac{1}{2a}+\frac{1}{2b}\right)\right)^{a+b}\ge \left(\ln\frac{1}{a}\right)^b\left(\ln\frac{1}{b}\right)^a\right)$
- An Inequality with Just Two Variables VI $\left(|x-y|(x+1)(y+1)\le 2\right)$
- An Inequality with Just Two Variable VII $\left(\displaystyle (x^3+y^3)^3(x^2-xy+y^2)\ge x^2y^2\sqrt{xy}(x^2+y^2)^3\right)$
- An Inequality with Just Two Variable VIII
- The power of substitution III: proving an inequality with two variables $\left(\displaystyle\frac{1}{\sqrt{1+a^2}}+\frac{1}{\sqrt{1+b^2}}\le\frac{2}{\sqrt{1+ab}}\right)$
- Simple Yet Uncommon Inequalities with Absolute Value $\left((|x|-|y|)^2\le |x^2-y^2|,\,|\sqrt{|x|}-\sqrt{|y|}|\le\sqrt{|x-y|}\right)$
- An Inequality with Just Two Variable And an Integer $\small{\left(\displaystyle \Bigr(\frac{a}{b^n}+\frac{b}{a^n}\Bigr)\Bigr(\frac{a^n}{b}+\frac{b^n}{a}\Bigr)\Bigr(\frac{a^n}{b^n}+\frac{b}{a}\Bigr)\Bigr(\frac{b^n}{a^n}+\frac{a}{b}\Bigr)\geq 8\left(\sqrt{\displaystyle\left(\frac{a}{b}\right)^{n-1}}+\sqrt{\displaystyle\left(\frac{b}{a}\right)^{n-1}}\right)\right)}$
- An Inequality with Exponents $\left(\displaystyle b^b\cdot e^{a+\frac{1}{a}}\ge 2e^b\right)$
- Problem 790 from Pentagon: an Inequality in Two Variables $\left(\displaystyle\ln \left|\left(\frac{2+\sin 2b}{2+\sin 2a}\right)\right|\leq \frac{2\sqrt{3}}{3}(b-a)\right)$
- An Inequality with Two Variables from Awesome Math $\left(\displaystyle \frac{6ab-b^2}{8a^2+b^2}\lt\sqrt{\frac{a}{b}}\right)$
|Contact| |Up| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny72348107