An Inequality with Just Two Variables
Problem
Solution 1
The required inequality is equivalent to
$\displaystyle 1+1+\left(\frac{a+b}{2ab}\right)\left(\sqrt{\frac{a^2+b^2}{2}}\right)+\left(\frac{2ab}{a+b}\right)\left(\sqrt{\frac{2}{a^2+b^2}}\right)\le 2+\frac{a}{b}+\frac{b}{a},$
or,
$\displaystyle \left(\frac{a+b}{2ab}\right)\left(\sqrt{\frac{a^2+b^2}{2}}\right)+\left(\frac{2ab}{a+b}\right)\left(\sqrt{\frac{2}{a^2+b^2}}\right)\le \frac{a}{b}+\frac{b}{a},$
Focusing on the left-hand side:
$\displaystyle\begin{align} \left(\frac{a+b}{2ab}\right)\left(\sqrt{\frac{a^2+b^2}{2}}\right)&+\left(\frac{2ab}{a+b}\right)\left(\sqrt{\frac{2}{a^2+b^2}}\right)\\ &= \frac{1}{\sqrt{2(a^2+b^2)}}\left(\frac{a+b}{2ab}(a^2+b^2)+\frac{4ab}{a+b}\right)\\ &\le \frac{1}{\sqrt{2(a^2+b^2)}}\left(\frac{a+b}{2ab}(a^2+b^2)+(a+b)\right)\\ &\le \frac{1}{a+b}\left(\frac{a+b}{2ab}(a^2+b^2)+(a+b)\right)\\ &= \frac{a^2+b^2}{2ab}+1\\ &\le\frac{1}{2}\left(\frac{a}{b}+\frac{b}{a}\right)+\frac{1}{2}\left(\frac{a}{b}+\frac{b}{a}\right)\\ &=\frac{a}{b}+\frac{b}{a}, \end{align}$
where we applied the AM-GM inequality.
Solution 2
$\text{Harmonic mean}\;\le\;\text{Arithmetic mean}\;\le\;\text{Quadratic mean},$
implying
$\displaystyle\frac{2ab}{a+b}=\frac{2}{\displaystyle\frac{1}{a}+\frac{1}{b}}\le\frac{a+b}{2}\le\sqrt{\frac{a^2+b^2}{2}}$
such that
(1)
$\displaystyle\frac{2ab}{a+b}+\sqrt{\frac{a^2+b^2}{2}}\le 2\sqrt{\frac{a^2+b^2}{2}}.$
Also,
$\displaystyle \frac{a+b}{2}\left(\frac{1}{ab}\right)\le\sqrt{\frac{a^2+b^2}{2}}\left(\frac{1}{ab}\right),$
such that
(2)
$\displaystyle \frac{a+b}{2ab}+\sqrt{\frac{2}{a^2+b^2}}\le\sqrt{\frac{a^2+b^2}{2}}\left(\frac{1}{ab}\right)+\sqrt{\frac{2}{a^2+b^2}},$
Multiplying (1) and (2) we get
$\displaystyle\begin{align} &\left(\frac{2ab}{a+b}+\sqrt{\frac{a^2+b^2}{2}}\right)\left(\frac{a+b}{2ab} + \sqrt{\frac{2}{a^2+b^2}}\right)\\ &\qquad\qquad\le 2\sqrt{\frac{a^2+b^2}{2}}\left(\sqrt{\frac{a^2+b^2}{2}}\left(\frac{1}{ab}\right)+\sqrt{\frac{2}{a^2+b^2}}\right)\\ &\qquad\qquad=\frac{a^2+b^2}{ab}+2\\ &\qquad\qquad=\frac{(a+b)^2}{ab}. \end{align}$
Solution 3
WLOG, assume $a\le b.\;$ As before,
$\displaystyle 0\lt a\le\frac{2ab}{a+b}=\frac{2}{\displaystyle\frac{1}{a}+\frac{1}{b}}\le\frac{a+b}{2}\le\sqrt{\frac{a^2+b^2}{2}}\le b.$
We'll use Schweitzer's inequality:
$\displaystyle\left(\sum_{k=1}^{n}x_k\right)\left(\sum_{k=1}^{n}\frac{1}{x_k}\right)\le\frac{(m+M)^2n^2}{4mM},$
where $x_1,\ldots,x_n\in [m,M],\;$ $m\gt 0.\;$
with $n=2,\;$ $\displaystyle x_1=\frac{2ab}{a+b},\;$ $\displaystyle x_2=\sqrt{\frac{a^2+b^2}{2}},\;$ we directly get
$\displaystyle\left(\frac{2ab}{a+b}+\sqrt{\frac{a^2+b^2}{2}}\right)\left(\frac{a+b}{2ab} + \sqrt{\frac{2}{a^2+b^2}}\right) \le \frac{(a+b)^2}{ab}.$
Illustration
Acknowledgment
The problem above has been kindly posted to the CutTheKnotMath facebook page by Dan Sitaru, along with several solutions. Solution 1 is by Kevin Soto Palacios; Solution 2 by Soumava Chakraborty; Solution 3 is by Dan Sitaru. The illustration is by Nassim N. Taleb.
Inequalities in Two Variables
- An Inequality with Just Two Variable $\left(\displaystyle\left(\frac{2ab}{a+b}+\sqrt{\frac{a^2+b^2}{2}}\right)\left(\frac{a+b}{2ab} + \sqrt{\frac{2}{a^2+b^2}}\right) \le \frac{(a+b)^2}{ab}\right)$
- An Inequality with Just Two Variable II $\left(\displaystyle\small{\left(\frac{2ab}{a+b}+\sqrt{ab}+\frac{a+b}{2}\right)\left(\frac{a+b}{2ab} + \frac{1}{\sqrt{ab}}+\frac{2}{a+b}\right) \le 5 +2 \left(\frac{a}{b}+\frac{b}{a}\right)}\right).$
- An Inequality with Just Two Variable III $\left(\displaystyle\frac{a}{b\sqrt{2}}+\frac{b\sqrt{2}}{a}+2\left(\frac{\sqrt{a^2+b^2}}{b}+\frac{b}{a^2+b^2}\right)\ge \frac{9\sqrt{2}}{2}\right)$
- An Inequality with Just Two Variables IV $\left(\displaystyle\frac{a+2}{a^2+a+1}+\frac{b+2}{b^2+b+1}\ge \frac{ab+2}{(ab)^2+ab+1}+1\right)$
- An Inequality with Just Two Variables V $\left(\displaystyle \left(\ln\left(\frac{1}{2a}+\frac{1}{2b}\right)\right)^{a+b}\ge \left(\ln\frac{1}{a}\right)^b\left(\ln\frac{1}{b}\right)^a\right)$
- An Inequality with Just Two Variables VI $\left(|x-y|(x+1)(y+1)\le 2\right)$
- An Inequality with Just Two Variable VII $\left(\displaystyle (x^3+y^3)^3(x^2-xy+y^2)\ge x^2y^2\sqrt{xy}(x^2+y^2)^3\right)$
- An Inequality with Just Two Variable VIII $\left(\displaystyle \frac{a^2}{b+2}+\frac{b^3}{a+2}+(2-a)b^2\le 12\right)$
- The power of substitution III: proving an inequality with two variables $\left(\displaystyle\frac{1}{\sqrt{1+a^2}}+\frac{1}{\sqrt{1+b^2}}\le\frac{2}{\sqrt{1+ab}}\right)$
- Simple Yet Uncommon Inequalities with Absolute Value $\left((|x|-|y|)^2\le |x^2-y^2|,\,|\sqrt{|x|}-\sqrt{|y|}|\le\sqrt{|x-y|}\right)$
- An Inequality with Just Two Variable And an Integer $\small{\left(\displaystyle \Bigr(\frac{a}{b^n}+\frac{b}{a^n}\Bigr)\Bigr(\frac{a^n}{b}+\frac{b^n}{a}\Bigr)\Bigr(\frac{a^n}{b^n}+\frac{b}{a}\Bigr)\Bigr(\frac{b^n}{a^n}+\frac{a}{b}\Bigr)\geq 8\left(\sqrt{\displaystyle\left(\frac{a}{b}\right)^{n-1}}+\sqrt{\displaystyle\left(\frac{b}{a}\right)^{n-1}}\right)\right)}$
- An Inequality with Exponents $\left(\displaystyle b^b\cdot e^{a+\frac{1}{a}}\ge 2e^b\right)$
- Problem 790 from Pentagon: an Inequality in Two Variables $\left(\displaystyle\ln \left|\left(\frac{2+\sin 2b}{2+\sin 2a}\right)\right|\leq \frac{2\sqrt{3}}{3}(b-a)\right)$
- An Inequality with Two Variables from Awesome Math $\left(\displaystyle \frac{6ab-b^2}{8a^2+b^2}\lt\sqrt{\frac{a}{b}}\right)$
|Contact| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny72202071