A simple integral, III
The problem has been shared on facebook by George Apostolopoulos and solved (Solution 1) by Mehmet Şahin. Amit Itagi has contributed Solution 2, N. N. Talleb Solution 3. Later on, Dan Sitaru submitted an amendment to the problem graceously offered by the problem authors.
There is a way to find this integral without actually computing integrals at all. Well, almost.
|Contact| |Front page| |Contents| |Algebra| |Up|
Copyright © 1996-2018 Alexander Bogomolny
Evaluate the integral
$\displaystyle \int_{0}^{\frac{\pi}{4}}\ln (\tan(x)+1)dx.$
Solution 1
Let's make a substitution, say, $x=\displaystyle \frac{\pi}{4}-t.\,$ Then $dx=-dt\,$ and
$\displaystyle \begin{align} I &= \int_{0}^{\frac{\pi}{4}}\ln (\tan(x)+1)dx\\ &=\int_{\frac{\pi}{4}}^{0}\ln \left(\tan\left(\frac{\pi}{4}-t\right)+1\right)(-dt)\\ &=\int_{0}^{\frac{\pi}{4}}\ln \left(\frac{1-\tan(t)}{1+\tan(t)}+1\right)dt\\ &=\int_{0}^{\frac{\pi}{4}}\ln \left(\frac{2}{1+\tan(t)}\right)dt\\ &=\int_{0}^{\frac{\pi}{4}}\ln 2dt-\int_{0}^{\frac{\pi}{4}}\ln(1+\tan(t))dt\\ &=\frac{\pi}{4}\ln(2)-I, \end{align}$
implying that $\displaystyle 2I=\frac{\pi}{4}\ln(2),\,$ or $\displaystyle I=\frac{\pi}{8}\ln(2).$
Solution 2
$\begin{align} \ln (1+\tan x) &= \ln (\sin x + \cos x) - \ln (\cos x) \\ \nonumber &= \ln\left[\sqrt{2}\cos\left(\frac{\pi}{4}-x\right)\right] - \ln(\cos x) \\ &=\frac{\ln 2}{2} + \ln\left[\cos\left(\frac{\pi}{4}-x\right)\right] - \ln(\cos x) \end{align}$
$\begin{align} \int_0^{\pi/4} \ln(1+\tan x) dx &= \frac{\pi}{8}\ln 2 + \int_0^{\pi/4} \ln\left[\cos\left(\frac{\pi}{4}-x\right)\right] dx - \int_0^{\pi/4} \ln(\cos x) dx \\ &= \frac{\pi}{8}\ln 2 - \int_{\pi/4}^{0} \ln(\cos x) dx - \int_0^{\pi/4} \ln(\cos x) dx \\ &= \frac{\pi}{8}\ln 2 + \int_0^{\pi/4} \ln(\cos x) dx - \int_0^{\pi/4} \ln(\cos x) dx \\ &= \frac{\pi}{8}\ln 2 \end{align}$
Solution 3
By substitution $=\tan(x),\,$
$\displaystyle \int_{0}^{frac{\pi}{4}}\log (\tan(x)+1)dx=\int_{0}^{1}\frac{\log (u+1)}{u^2+1}.$
We substitute again: $\displaystyle v=\frac{1-u}{1+u}:$
$\displaystyle \begin{align} \int_{0}^{1}\frac{\log (u+1)}{^2+1} &=\int_{0}^{1}\frac{\log(2)-\log (v+1)}{v^2+1}dv\\ &=[\arctan(v)\log(2)]^{1}_{0}-\int_0^1\frac{\log(v+1)}{v^2+1}dv\\ &=\frac{1}{4}\pi\log(2)-\int_0^1\log(v+1){c^2+1}dv \end{align}$
It follows that $\displaystyle \int_0^1\log(v+1){c^2+1}dv=\frac{1}{4}\pi\log(2)$.
Amendement
If $a,b\in\displaystyle\left(0,\frac{\pi}{4}\right)\,$ and $a+b=\displaystyle\frac{\pi}{4}\,$ then evaluate the integral
$\displaystyle \int_{a}^{b}\ln (\tan(x)+1)dx.$
Solution
Make a substitution $x=a+b-t=\displaystyle\frac{\pi}{4}.\,$ Then $x'(t)=-1\,$ $x(a)=b,\,$ and $x(b)=a\,$ so that
$\displaystyle\begin{align} I&=\int_{a}^{\frac{\pi}{4}b}\ln (\tan(x)+1)dx\\ &=\int_{a}^{\frac{\pi}{4}b}\ln (\tan\left(\frac{\pi}{4}-t\right)+1)(-1)dx\\ &=\int_{a}^{b}\ln\left(1+\frac{1-\tan t}{1+\tan t}\right)dt\\ &=\int_{a}^{b}\ln\left(\frac{1+\tan t+1-\tan t}{1+\tan t}\right)dt\\ &=\int_{a}^{b}\ln\left(\frac{2}{1+\tan t}\right)dt\\ &=\ln 2\int_{a}^{b}dt-\int_{a}^{b}\ln(1+\tan x)dx. \end{align}$
It follows that $2I=(b-a)\ln 2,\,$ i.e., $\displaystyle I=\frac{b-a}{2}\ln 2.$
- A simple integral, I
- A simple integral, II
- A simple integral, III
- Another simple integral
- Yet Another Simple Integral
- Integral in Normal Distribution
- Sum Without Adding
- An Integral Inequality from the RMM
- Another Integral Inequality from the RMM
- A Triple Integral Inequality
- An Integral from the RMM
- An Integral Identity with Two Functions
- A Simple Integral of a Peculiar Function
|Contact| |Front page| |Contents| |Algebra| |Up|
Copyright © 1996-2018 Alexander Bogomolny
72091512