A simple integral, II
Here is problem #675 from The Pentagon magazine published by Kappa Mu Epsilon. The problem and the solution below are by Ovidiu Furdui, Campia Turzii, Cluj, Romania.
Let \(k\) be a real number with \(k \gt -1\). Calculate the double integral
\(\displaystyle\int_{0}^{1}\int_{0}^{1}\frac{x^{k+1}y^{k}}{x+y}dxdy.\)
There is a way to find this integral actually without computing integrals at all. Well, almost.
|Contact| |Front page| |Contents| |Algebra| |Up|
Copyright © 1996-2018 Alexander Bogomolny
Let \(k\) be a real number with \(k \gt -1\). Calculate the double integral
\(\displaystyle\int_{0}^{1}\int_{0}^{1}\frac{x^{k+1}y^{k}}{x+y}dxdy.\)
Solution
Let \(I\) denote the value of the integral. By symmetry, we have
\(\displaystyle I=\int_{0}^{1}\int_{0}^{1}\frac{x^{k+1}y^{k}}{x+y}dxdy=\int_{0}^{1}\int_{0}^{1}\frac{x^{k}y^{k+1}}{x+y}dxdy.\)
Therefore,
\( \displaystyle \begin{align} I &= \frac{1}{2}(I + I) \\ &= \frac{1}{2}(\int_{0}^{1}\int_{0}^{1}\frac{x^{k+1}y^{k}}{x+y}dxdy+\int_{0}^{1}\int_{0}^{1}\frac{x^{k}y^{k+1}}{x+y}dxdy) \\ &= \frac{1}{2}\int_{0}^{1}\int_{0}^{1}{x^{k}y^{k}}dxdy \\ &= \frac{1}{2}\frac{1}{(k+1)^{2}}. \end{align} \)
- A simple integral, I
- A simple integral, II
- A simple integral, III
- Another simple integral
- Yet Another Simple Integral
- Integral in Normal Distribution
- Sum Without Adding
- An Integral Inequality from the RMM
- Another Integral Inequality from the RMM
- A Triple Integral Inequality
- An Integral from the RMM
- An Integral Identity with Two Functions
- A Simple Integral of a Peculiar Function
|Contact| |Front page| |Contents| |Algebra| |Up|
Copyright © 1996-2018 Alexander Bogomolny
72202026