# A simple integral, II

Here is problem #675 from The Pentagon magazine published by Kappa Mu Epsilon. The problem and the solution below are by Ovidiu Furdui, Campia Turzii, Cluj, Romania.

Let $k$ be a real number with $k \gt -1$. Calculate the double integral

$\displaystyle\int_{0}^{1}\int_{0}^{1}\frac{x^{k+1}y^{k}}{x+y}dxdy.$

There is a way to find this integral actually without computing integrals at all. Well, almost. Let $k$ be a real number with $k \gt -1$. Calculate the double integral

$\displaystyle\int_{0}^{1}\int_{0}^{1}\frac{x^{k+1}y^{k}}{x+y}dxdy.$

### Solution

Let $I$ denote the value of the integral. By symmetry, we have

$\displaystyle I=\int_{0}^{1}\int_{0}^{1}\frac{x^{k+1}y^{k}}{x+y}dxdy=\int_{0}^{1}\int_{0}^{1}\frac{x^{k}y^{k+1}}{x+y}dxdy.$

Therefore,

\displaystyle \begin{align} I &= \frac{1}{2}(I + I) \\ &= \frac{1}{2}(\int_{0}^{1}\int_{0}^{1}\frac{x^{k+1}y^{k}}{x+y}dxdy+\int_{0}^{1}\int_{0}^{1}\frac{x^{k}y^{k+1}}{x+y}dxdy) \\ &= \frac{1}{2}\int_{0}^{1}\int_{0}^{1}{x^{k}y^{k}}dxdy \\ &= \frac{1}{2}\frac{1}{(k+1)^{2}}. \end{align}  