Integral in Normal Distribution
Normal distribution is defined by the so-called "hat function": \(\displaystyle f (x)=\frac{1}{2\sqrt{\pi}}e^{-\frac{1}{2}x^{2}}\) The coefficient \(\displaystyle \frac{1}{2\sqrt{\pi}}\) is so chosen as to insure that \(\displaystyle \int_{-\infty}^{\infty} f(x)dx=1.\)
To see how this come about, I'll compute the integral \(\displaystyle I=\int_{-\infty}^{\infty} e^{-x^{2}}dx\). The idea is to convert the integral to a double integral by squaring and subsequently change to polar coordinates:
\( \displaystyle \begin{array}{6,2} I\times I &= \int_{-\infty}^{\infty} e^{-x^{2}}dx \times\int_{-\infty}^{\infty} e^{-y^{2}}dy \\ &= \int_{-\infty}^{\infty}\int_{-\infty}^{\infty} e^{-(x^{2}+y^{2}}dxdy \\ &= \int_{0}^{2\pi }\int_{0}^{\infty} re^{-r^{2}}drd\phi \\ &= \int_{0}^{2\pi }\left( -\frac{1}{2}e^{-r^{2}}\big|_{0}^{\infty} \right)d\phi \\ &= \int_{0}^{2\pi } \frac{1}{2}( 1 - 0)d\phi \\ &= 2\pi\times \frac{1}{2} = \pi, \end{array} \)
implying that \(\displaystyle I=\sqrt{\pi}\). The integral in the normal distribution is obtained by a change of variables and scale.
- A simple integral, I
- A simple integral, II
- A simple integral, III
- Another simple integral
- Yet Another Simple Integral
- Integral in Normal Distribution
- Sum Without Adding
- An Integral Inequality from the RMM
- Another Integral Inequality from the RMM
- A Triple Integral Inequality
- An Integral from the RMM
- An Integral Identity with Two Functions
- A Simple Integral of a Peculiar Function
|Contact| |Front page| |Contents| |Algebra| |Up|
Copyright © 1996-2018 Alexander Bogomolny
71945634