Another Integral Inequality from the RMM
Problem
Proof
For $a\ge 1,$
$\displaystyle\begin{align} \Omega(a) &= \int_{-1/a}^{1/a}(2x^6+2x^4+3)\arccos(ax)dx\\ &=\int_{-1/a}^{1/a}(2x^6+2x^4+3)\left(\frac{\pi}{2}-\arcsin(ax)\right)dx\\ &=\frac{\pi}{2}I_1-I_2, \end{align}$
where
$\displaystyle\begin{align} I_1 &= \int_{-1/a}^{1/a}(2x^6+2x^4+3)dx\\ &=2\left[\frac{2}{7}x^7+\frac{2}{5}x^5+3x\right]_{0}^{1/a}\\ &=2\left[\frac{2}{7a^7}+\frac{2}{5a^5}+\frac{3}{a}\right]\\ &\le\frac{2}{35}[10+14+105]\frac{1}{a}\\ &=\frac{2\cdot 129}{35a}, \end{align}$
because $a^7\ge a^5\ge a.\,$ On the other hand, $I_2=0,\,$ being an integral of an odd function. So, finally,
$\displaystyle\Omega(a)=\frac{\pi}{2}I_1-I_2\le\frac{\pi}{2}\cdot\frac{2\cdot 129}{35a}=\frac{129\pi}{35a}.$
Acknowledgment
The problem from the Romanian Mathematical Magazine has been kindly posted at the CutTheKnotMath facebook page by Dan Sitaru, along with the solution by Ravi Prakash (India).
- A simple integral, I
- A simple integral, II
- A simple integral, III
- Another simple integral
- Yet Another Simple Integral
- Integral in Normal Distribution
- Sum Without Adding
- An Integral Inequality from the RMM
- Another Integral Inequality from the RMM
- A Triple Integral Inequality
- An Integral from the RMM
- An Integral Identity with Two Functions
- A Simple Integral of a Peculiar Function
|Contact| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny71948608