Construction of a Polygon from Rotations and their Centers

Given n points M1, M2, ..., Mn (n > 2) and angles a1, a2, ..., an, construct a polygon A1, A2, ..., An, An+1 = A1 such that triangles AiMiAi+1 are isosceles (AiMi = Ai+1Mi) with the apex angle ∠AiMiAi+1 = ai.

The applet has three modes. In the "Place points" mode, you define (by clicking) and move (by dragging) a sequence of points M. The order in which the points are created determines the order of traversal (orientation) of the sequence. The set of points may have two different orientations. The angles, on the other hand, are always measured in the positive direction of the coordinate system - left handed in the applet, which means that the angles are measured clockwise.

In the "Change angles" mode, angles are display next to the corresponding point and can be modified by clicking (slow) or dragging the cursor (fast) a little off their central line.

In the "Drag cursor" mode, the cursor position is rotated in order through the given angles around the given points. What is shown is a broken line whose starting and ending points are denoted by the same letter. There may be several such lines.


This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at https://www.java.com/en/download/index.jsp, download and install Java VM and enjoy the applet.


What if applet does not run?

Explanation

[an error occurred while processing this directive]

|Activities| |Contact| |Front page| |Contents| |Eye opener| |Geometry|

Copyright © 1996-2018 Alexander Bogomolny
[an error occurred while processing this directive]
[an error occurred while processing this directive]