An Inequality with Integrals
Problem
Solution 1
$\displaystyle \begin{align} \Omega(u)&=\int_0^u\frac{x^4+7x^3-25x^2+37x+4}{x^4-3x^3+5x^2-3x+4}dx\\ &=\int_0^u\frac{(x^4-3x^3+5x^2-3x+4)+(10x^3-30x^2+40x)}{x^4-3x^3+5x^2-3x+4}dx\\ &=\int_0^u\left(1+\frac{10x(x^2-3x+4)}{(x^2+1)(x^2-3x+4)}\right)dx\\ &=\int_0^u\left(1+\frac{10x}{x^2+1}\right)dx\\ &=u+5\ln(u^2+1). \end{align}$
It follows that, by the AM-GM inequality, that
$\displaystyle \begin{align} \Omega(a)+\Omega(b)+\Omega(C)&\ge (a+b+c)+5\sum_{cycl}\ln(a^2+1)\\ \Omega(a)+\Omega(b)+\Omega(C)&\ge 3\sqrt[3]{abc}+5\ln\prod_{cycl}(a^2+1)\\ &=3+5\ln\prod_{cycl}(a^2+1). \end{align}$
Solution 2
$\displaystyle \Omega (u):=\int_0^u f(x)\, dx$ where
$\displaystyle f(x)=\frac{x^4+7 x^3-25 x^2+37 x+4}{x^4-3 x^3+5 x^2-3 x+4}.$
Simplifying we get $\displaystyle f(x)=\frac{10 x}{x^2+1}+1.$
We have the antiderivative as$\displaystyle \int f(x)\, dx= 5 \log \left(x^2+1\right)+x.$
$\displaystyle\sum_{cycl}(\Omega)=\sum_{cycl}a+ 5\log \left(x^2+1\right).$ Since $a+b+c \geq 3 \sqrt[3]{a b c}=3$, by AM-GM, we get the required proof.
Acknowledgment
The problem was kindly posted at the CutTheKnotMath facebook page by Dan Sitaru. The problem is by Dan and was previously published in the Romanian Mathematical Magazine. Solution 1 is by Seyran Ibrahimov; Solution 2 is by N. N. Taleb.
Inequalities with the Product of Variables as a Constraint
- An Application of Schur's Inequality II $\left(\sum (x^4+y^3+z) \ge \sum \left(\frac{x^2+y^2}{z}\right)+3\right)$
- Problem 1 From the 2016 Pan-African Math Olympiad $\left(\displaystyle \sum_{cycl}\frac{1}{(x+1)^2+y^2+1}\le\frac{1}{2}\right)$
- A Cyclic But Not Symmetric Inequality in Four Variables $\left(\displaystyle 5(a+b+c+d)+\frac{26}{abc+bcd+cda+dab}\ge 26.5\right)$
- Problem 2, the 36th IMO (1995) $\left(\displaystyle \frac{1}{a^3(b+c)}+\frac{1}{b^3(c+a)}+\frac{1}{c^3(a+b)}\ge\frac{3}{2}\right)$
- An Inequality with Two Cyclic Sums $\left(\displaystyle \sum_{cycl}(a+\sqrt[3]{a}+\sqrt[3]{a^2})\ge 9\sum_{cycl}\frac{1}{1+\sqrt[3]{b^2}+\sqrt[3]{c}}\right)$
- The Roads We Take $(x(x-3(y+z))^2+(3x-(y+z))^2(y+z)\ge 27)$
- Long Huynh Huu's Inequality and Solution $\left(\displaystyle \sum_{i=1}^n\arctan x_i\le (n-1)\frac{\pi}{2}\right)$
- An Inequality with Integrals
- An Inequality with Cycling Sums $\left(\displaystyle\sum_{cycl}(x^4+y^3+z)\ge \sum_{cycl}\frac{x^2+y^2}{z}+3\right)$
- Two Products: Constraint and Inequality $\left(\displaystyle\prod_{k=1}^n(1+a_k)\ge 2^n\right)$
- Leo Giugiuc's Cyclic Inequality with a Constraint $\left(\displaystyle a^3+b^3+c^3+\frac{16}{(a+b)(b+c)(c+a)}\ge 5\right)$
|Contact| |Up| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny71927590