An Application of Schur's Inequality II
Dan Sitaru has kindly communicated a problem he invented and solved in collaboration with Leo Giugiuc. Theirs is Proof 1. Proof 2 is by Imad Zak.
Proof 1
We use Schur's inequality twice:
With $r=1\;$ in the form $\sum x^3+3xyz\ge \sum xy(x+y)\;$ and,
with $r=2\;$ in the form $\sum x^4+xyz\sum x\geq \sum xy(x^2+y^2).\;$
Since $xyz=1$ the two can be rewritten as
$\displaystyle \sum x^3+3\ge \sum \left(\frac{x+y}{z}\right),\\ \displaystyle \sum x^4+\sum x\geq \sum \left(\frac{x^2+y^2}{z}\right).$
Adding up,
$\displaystyle\sum (x^4+x^3+x)+3\ge \sum \left(\frac{x^2+y^2}{z}\right)+\frac{x}{z}+\frac{z}{x}+\frac{y}{x}+\frac{x}{y}+\frac{y}{z}+\frac{z}{y}.$
But $\displaystyle\sum \left(\frac{x}{z}+\frac{z}{x}\right)\ge 2+2+2=6.\;$ It follows that
$\displaystyle\sum (x^4+x^3+x)\ge \sum \left(\frac{x^2+y^2}{z}\right)+6-3$
or
$\displaystyle\sum (x^4+y^3+z)\geq \sum \left(\frac{x^2+y^2}{z}\right)+3.$
Proof 2
We start with Schur's inequality:
$\displaystyle\sum x^4+xyz\sum x=\sum x^4+\sum x=\sum (x^4+x)\ge\sum xy(x^2+y^2)=\sum\frac{x^2+y^2}{z}.$
Further, by the AM-GM inequality,
$\sum x^3\ge 3xyz=3.$
Adding this to the previous inequality yields the required result. Equlity holds fot $x=y=z=1.$

Inequalities with the Product of Variables as a Constraint
- An Application of Schur's Inequality II
- Problem 1 From the 2016 Pan-African Math Olympiad $\left(\displaystyle \sum_{cycl}\frac{1}{(x+1)^2+y^2+1}\le\frac{1}{2}\right)$
- A Cyclic But Not Symmetric Inequality in Four Variables $\left(\displaystyle 5(a+b+c+d)+\frac{26}{abc+bcd+cda+dab}\ge 26.5\right)$
- Problem 2, the 36th IMO (1995) $\left(\displaystyle \frac{1}{a^3(b+c)}+\frac{1}{b^3(c+a)}+\frac{1}{c^3(a+b)}\ge\frac{3}{2}\right)$
- An Inequality with Two Cyclic Sums $\left(\displaystyle \sum_{cycl}(a+\sqrt[3]{a}+\sqrt[3]{a^2})\ge 9\sum_{cycl}\frac{1}{1+\sqrt[3]{b^2}+\sqrt[3]{c}}\right)$
- The Roads We Take $(x(x-3(y+z))^2+(3x-(y+z))^2(y+z)\ge 27)$
- Long Huynh Huu's Inequality and Solution $\left(\displaystyle \sum_{i=1}^n\arctan x_i\le (n-1)\frac{\pi}{2}\right)$
- An Inequality with Integrals $\left(\Omega=\int_0^u\frac{u^4+7x^3-25x^2+37x+4}{x^4-3x^3+5x^2-3x+4}dx,\;\Omega(a)+\Omega(b)+\Omega(C)\ge3+5\ln\prod_{cycl}(1+a^2)\right)$
- An Inequality with Cycling Sums $\left(\displaystyle\sum_{cycl}(x^4+y^3+z)\ge \sum_{cycl}\frac{x^2+y^2}{z}+3\right)$
- Two Products: Constraint and Inequality $\left(\displaystyle\prod_{k=1}^n(1+a_k)\ge 2^n\right)$
- Leo Giugiuc's Cyclic Inequality with a Constraint $\left(\displaystyle a^3+b^3+c^3+\frac{16}{(a+b)(b+c)(c+a)}\ge 5\right)$

|Contact| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny
72534764