Metric Relations in a Triangle
The triangle is an amazingly rich structure, with a maltitude of relations between its elements. Below I shall be using standard notations: a, b, c, for the side length, p for the semiperimeter, etc.
(Note that the are also very useful inequalities between the elements, and purely trigonometric identities between the angles of a triangle.)
- Ceva's Theorem
- Law of Cosines
- Law of Sines
- Menelaus' Theorem
- Stewart's Theorem
- Van Obel Theorem
- Carnot's Theorem
- 2·S = a·ha = b·hb = c·hc.
- 2·S = ab sin(C) = ac·sin(B) = bc·sin(A).
- S² = p(p - a)(p - b)(p - c).
- ha² = 4S²/a² = 4p(p - a)(p - b)(p - c)/a², etc.
- S = rp.
- r² = p-1(p - a)(p - b)(p - c).
- 1/r = 1/ha + 1/hb + 1/hc.
- ha = c·sin(B) = b·sin(C), etc.
- cot(A/2) = (p - a)/r, etc.
- S = ra(p - a), etc.
- sin²(A/2) = (p - b)(p - c) / bc, etc.
- cos²(A/2) = p(p - a) / bc, etc.
- tan²(A/2) = (p - b)(p - c) / p(p - a), etc.
- cos²[(C-B)/2] = [(b+c)²(p-b)(p-c)] / [a²bc], etc.
- AI = r/sin(A/2), etc.
- AI² = (p - a)bc/p, etc.
- AI² = bc·tan(B/2)·tan(C/2), etc.
- 1/r = 1/ra + 1/rb + 1/rc.
- ra + rb + rc = r + 4R.
- r+R=R(cos(A)+cos(B)+cos(C))
- rarbrc = pS.
- r rarbrc = S².
- ra² = p(p - a)-1(p - b)(p - c), etc.
- la² = 4p(p - a)bc(b + c)-2, etc.
- la = 2bc cos(A/2) / (b + c), etc.
- ma² = (b² + c²)/2 - a²/4, etc.
- abc = 4RS.
- bc = 2Rha.
- OI² = R² - 2Rr.
- r + ra + rb - rc = 4Rcos(C).
- ra + rb = 4Rcos²(C/2).
- p = 4Rcos(A/2)·cos(B/2)·cos(C/2).
- p - a = 4Rcos(A/2)·sin(B/2)·sin(C/2).
- S = 2R²sin(A)·sin(B)·sin(C).
- r = 4Rsin(A/2)·sin(B/2)·sin(C/2).
- 2vers(A)vers(B)vers(C) = r²/R².
- cot(A/2) + cot(B/2) + cot(C/2) = cot(A/2)·cot(B/2)·cot(C/2).
- vers(A)vers(B)vers(C) = 8·AI·BI·CI/R3
- rR = abc / 4p
- AH = 2R·|cos(A)|
- AH2 = 4R2 - a2
- HO² = 9R² - (a² + b² + c²)
- (c + a)/b = cos((C - A)/2)/sin(B/2)
- (c - a)/b = sin((C - A)/2)/cos(B/2)
- p² = rarb + rbrc + rcra
- 1/(2Rr) = 1/(ab) + 1/(bc) + 1/(ca)

|Contact| |Front page| |Contents| |Geometry|
Copyright © 1996-2018 Alexander Bogomolny
72503872