Representation of numbers with four 5's
1 | 5/5×5/5 = 5×5-5!/5(2) |
2 | (5+5)/√5/√5 = 5!!-5!/5!!-5(2) = (5!!/5)!)!!×5/5!(2) = 5!/5!!-(5!!/5)!(2) = 5!!/5-5/5(2) |
3 | (5+5+5)/5 = 5!/5!!-√(5×5)(2) = 5!!/5+5-5(2) = 5×5-5×.5(2) |
4 | √5×√5-5/5 = 5/.5-(5!!/5)!(2) = 5/5/.5/.5(2) = 5!!/5+5/5(2) |
5 | 5×5/√5/√5 = (5+5)/.5-5!!(2) = (5!!/5)!-5/5(2) |
6 | √5×√5+5/5 = 55/5-5(2) = (5!!/5)!+5-5(2) |
7 | 5+(5+5)/5 = 5!/(5+5)-5(2) = (5!!/5)!+5/5(2) = 55-((5!!/5)!)!!(2) = |
8 | 5/.(5)-5/5 = 5!/5!!+5-5(2) = √(5!!×5!!)×.5+.5(2) = 5!/(5+5+5)(3) |
9 | 5/.5-5/5 = 5!!-5-5/5(2) = 5!!/5+5!!/5(2) = 5!!/5×5!!/5(2) = 5!/√(5×5)-5!!(2) = 5+5-5/5(3) |
10 | 5/.5+5-5=5/.(5)+5/5 = 5!!×.5+5×.5(2) = 5+5+5-5(2) = 55/5.5(2) |
11 | 5+5+5/5 = 5!!-5+5/5(2) = 55/√(5×5) = ((5!!/5)!-.5)/.5(2) |
12 | 5+5+[.5×5] = 5!!-5!/5!!+5(2) = 5!/√(5×5)×.5(2) = √(((5!!/5)!)!/√(5×5))(2) |
13 | (5+5)/.(5)-5=5!!-(5+5)/5 = 5!/5!!+√(5×5)(2) = ((5!!/5)!+.5)/.5(2) = (5!-55)/5(3) |
14 | 5+5+5-[√√5] = 5!/5-5/.5(2) = 5!/5-5!!+5(2) = 5!/5!!+(5!!/5)!(2) = 5!/5-5-5(3) |
15 | (5+5)/.5-5=5×5-5-5 = (5!/5!!-.5)/.5(2) = 5!!+5-√(5×5)(2) |
16 | 5×5-5/.(5) = 55/5+5(2) = (5!/5!!)!!/5!×5(2) = (5!!+.5)/.5-5!!(2) |
17 | [(5+5)/.5-√5] = 5!!+(5+5)/5 = 5!/(5+5)+5(2) = 5×5-5!/5!!(2) = (5!!-5-.5)/.5(2) = |
18 | 5!!+5+5-5 = (5+5)/.5-[√5] = 5!!+5!/5!!-5(2) = 5!/5!!+5+5(2) = |
19 | 5/.5+5/.(5) = 5!!+5-5/5(2) = (5!!-5+.5)/.5(2) = (5!-5·5)/5 |
20 | 5/.5+5/.5 = 5!!+√(5×5)(2) = 5!!/.5-5/.5(2) = 5!/5!!×5×.5(2) |
21 | 5!!+5+5/5 = (5!!-5+.5)/.5-5!!(2) = ((5!!/5)!)!!-5!!/.(5)(2) |
22 | (5+5)/.5+[√5] = 55/5/.5(2) = 5!!+5!!-5!/5!!(2) = (5!-5-5)/5(3) |
23 | (5+5)/.(5)+5 = 5!/5-5/5(2) = 5!/5!!+5!!(2) = ((5!!/5)!)!!-5×5(2) |
24 | 5×5-5/5 = 5!/5+5-5(2) = 5!/5×5/5(2) = 5!!/.5-(5!!/5)!(2) = (5!!-.5)/.5-5(2) |
25 | 5×5+5-5 = 5!/5+5/5(2) = √(5×5×5×5)(2) = 5!/5!!×5-5!!(2) = (55-5)×.5(2) = √(5!+5)×√5(2) |
26 | 5×5+5/5 = 5!!+55/5(2) = (5!/5!!+5)/.5(2) = (5!!+.5)/.5-5(2) = (5!+5+5)/5(3) |
27 | 5!!/.(5)+5-5 = 5!!+5!!-5!!/5(2) = 5!!+(5!!/5)!/.5(2) = 55×.5-.5(2) = √(((5!!/5)!)!/5)+5!!(2) |
28 | 5!!/.(5)+5/5 = 5!!/.5-5+[√√5!](1) = 5!!+5!/5!!+5(2) = 55×.5+.5(2) = (5!!-5/5)/.5(2) = 55-5!!/.(5)(2) |
29 | 5!!/.5-5/5 = 5!/5+√(5×5)(2) = 5!!+5!!-5/5(2) = (5!+5·5)/5(3) |
30 | 5!!/.5+5-5 = (5+5/5)×5 = 55-5×5 = (55+5)×.5 = 5!/5+(5!!/5)!(2) |
31 | 5!!/.5+5/5 = 5!!/.5-5+[√√5!]!(1) = 5!!/.5+5/5(2) = 55-5!/5(2) = .5√((5!!/5)!)-5(2) |
32 | 5×5+5+[√5] = 5!/5!!/.5/.5(2) = 5!/5+5!/5!!(2) = (5!!+5/5)/.5(2) |
33 | 5!!/.5+5-[√5] = 5!!+5!!+5!!/5(2) = 5!/5/.5-5!!(2) = 5.5×(5!!/5)!(2) = (5+.5)× (5!!/5)!(2) |
34 | 5!!/.5+[√5+√5] = 5!/5+5/.5(2) = (5!!-.5)/.5+5(2) = 5!/5+5!!-5(2) |
35 | 5×5+5+5 = 5!!/.5+√5×√5 = 55-5!!-5(2) = 5!/5!!×5-5(2) = 5!×.5-5×5(2) = (5!!×.5-.5)×5(2) |
36 | 5!!/.(5)+5/.(5)=5!!/.5+5+[√√5]36 = (5!!/5)!×(5!!/5)!(2) = |
37 | 5!!/.(5)+5+5 = 5!!×5×.5-.5(2) = 5!!/.(5)+5!!-5(2) |
38 | 5!!+5×5-[√5] = ((5!!/5)!)!!-5-5(2) = ((5!!/5)!)!!-5!!+5(2) = 5!!×5×.5+.5(2) |
39 | 5!!+5×5-[√√5] = 5!/√(5×5)+5!!(2) = (5!!+5-.5)/.5(2) |
40 | (5×5-5)/.5(1) = 5!!+5!!+5!!-5(2) = 5!!/.5+5/.5(2) = ((5!!/5)!)!!-5!/5!!(2) = |
41 | 5!!+5×5+[√√5]41 = (5!!+5+.5)/.5(2) = (5!!+5.5)/.5(2) = .5√((5!!/5)!)+5(2) |
42 | 5!!+5×5+[√5] = ((5!!/5)!)!!-(5!!/5)!(2) |
43 | ((5!!/5)!)!!-√(5×5)(2) = 5!/5/.5-5(2) |
44 | 5.5×5!/5!!(2) = (5+.5)×5!/5!!(2) = 5!/5+5!!+5(2) |
45 | 55-5-5(2) = 55-5!!+5(2) = 5!/5!!×5+5(2) = ((5!!/5)!)!!-5!!/5(2) = 5×5/.5-5(2) |
46 | (5!!+.5)/.5+5!!(2) = 55-5/.(5)(2) |
47 | 55-5!/5!!(2) = ((5!!/5)!)!!-5/5(2) = 55-5!/5!!(2) = 5!!/.(5)+5!!+5(2) |
48 | ((5!!/5)!)!!+5-5(2) = (5!!/5)!×5!/5!!(2) = (5!/5!!)!!/(5!/5!!)(2) |
49 | ((5!!/5)!)!!+5/5(2) = 55-(5!!/5)!(2) = |
50 | 55-√(5×5)(2) = 5!!×5-5×5(2) = |
51 | ((5!!/5)!)!!+5!!/5(2) = 5!!×5-5!/5(2) = |
52 | 55-5!!/5(2) = 5!×.5-5!/5!!(2) = (5!-5!!)×.5-.5(2) |
53 | ((5!!/5)!)!!+√(5×5)(2) = 5!/5/.5+5(2) = (5!-5!!)×.5+.5(2) = (5!!/.(5)-.5)/.5(2) |
54 | 55-5/5(2) = ((5!!/5)!)!!+(5!!/5)!(2) = |
55 | 55+5-5(2) = 5!×.5-√(5×5)(2) = (5!!+5!!)/.5-5(2) = |
56 | 55+5/5(2) = ((5!!/5)!)!!+5!/5!!(2) |
57 | 5!×.5-5!!/5(2) = (5!-5)·.5-.5(2) = 5!-((5!!/5)!)!!-5!!(2) = 5!!/.(5)+5!!+5!!(2) |
58 | 55+5!!/5(2) = (5!-5)×.5+.5(2) = ((5!!/5)!)!!+5+5(2) |
59 | 5!×.5-5/5(2) = (5!!+5!!-.5)/.5(2) = .5√(5!/5)-5(2) |
60 | 55+√(5×5)(2) = 5!!/.5+5!!/.5(2) = √(((5!!/5)!)!/5)×5(2) = √(5×5!!×((5!!/5)!)!!)(2) |
61 | 5!×.5+5/5(2) = 55+(5!!/5)!(2) = (5!!+5!!+.5)/.5(2) |
62 | (5!+5)×.5-.5(2) |
63 | 55+5!/5!!(2) = 5!/5/.5+5!!(2) = 5!×.5+5!!/5(2) = (5!+5)×.5+.5(2) |
64 | 5!/5!!×5!/5!!(2) = (5!/5!!)!!/(5!!/5)!(2) = 55+5/.(5)(2) |
65 | 5!×.5+√(5×5)(2) = (5!!+5!!)/.5+5(2) = 5!!/.5/.5+5(2) |
66 | 5!×.5+(5!!/5)!(2) = (((5!!/5)!)!!-5!!)/.5(2) = 5!!/5-5/0.(5)(2) = .5√(5/.(5))-5!!(2) |
67 | 5!!×5-5!/5!!(2) = (5!+5!!)×.5-.5(2) = 5!-((5!!/5)!)!!-5(2) |
68 | 5!×.5+5!/5!!(2) = (5!+5!!)×.5+.5(2) |
69 | 5!!×5-(5!!/5)!(2) = .5√(5!/5)+5(2) |
70 | 5!!×√(5×5)-5(2) = (5!+5!!+5)×.5(2) |
71 | ceiling(√(√((5×5 + 5)5)))(3) |
72 | ((5!!/5)!)!!+5!/5(2) = 5!!×5-5!!/5(2) 72 = 5!!/5×5!/5(2) = ((5!!/5)!)!/5×.5(2) |
73 | 5×5×ceiling(√5) - [√5](3) |
74 | 5!!×5-5/5(2) |
75 | 55+5!!+5(2) = 5!!×5+5-5(2) = 5!!×(5!!/5)!-5!!(2) = ((5!!/5)!)!!+5!!/.(5)(2) = (5 + 5 + 5)×5 |
76 | 5!!×5+5/5(2) = .5√(5/.(5))-5(2) |
77 | 5!-((5!!/5)!)!!+5(2) |
78 | ((5!!/5)!)!!+5!!/.5(2) = 5!!×5+5!!/5(2) = 5!-5!!/.(5)-5!!(2) |
79 | 55+5!/5(2) = .5√(5!/5)+5!!(2) |
80 | 55+5×5(2) = 5!!×5+√(5×5)(2) = (55-5!!)/.5(2) = |
81 | 5!!×5+(5!!/5)!(2) = ((5!!/5)!)!!/.5-5!!(2) = 5×5/.(5)/.(5)(2) |
82 | 55+5!!/.(5)(2) |
83 | 5!!×5+5!/5!!(2) |
84 | 5!-.5√((5!!/5)!)(2) |
85 | 5!!×5+5+5(2) = 5!!×(5!!/5)!-5(2) |
86 | (((5!!/5)!)!!-5)/.5(2) = .5√(5/.(5)) + 5(2) |
87 | 5!-((5!!/5)!)!!+5!!(2) |
88 | ceiling(55 × (√(√5))) + 5(3) |
89 | [√(5!)] × (5 + 5) - ceiling(√(5!))(3) |
90 | [√(5!)] × (5 + 5) - [√(5!)](3) |
91 | [√5]5 × ceiling[√5] - 5(3) |
92 | 5! - 5×5 - ceiling(√5)(3) |
93 | 5! - 5×5 - [√5](3) |
94 | [√5]5 × ceiling(√5) - [√5](3) |
95 | (5 + 5)[√5] - 5(3) |
96 | [√5]5 × (5 - [√5])(3) |
97 | (5 + 5)[√5] - ceiling[√5](3) |
98 | (5 + 5)[√5] - [√5](3) |
99 | [√5]5 × ceiling[√5] + ceiling[√5](3) |
100 | (5 + 5) × (5 + 5)(3) = 5! - 5 × 5 + 5(4) |
(1) By Andre Gustavo dos Santos from Brasil
|Contact| |Front page| |Contents| |Up| |Arithmetic|
Copyright © 1996-2018 Alexander Bogomolny
71931873