Representation of numbers with four 4's
Remark
There is a convention I applied to identities below, especially for the numbers beyond 100. As the table grew, some awkward formulas became more common. In order to simplify the entries and shorten the file that contains this page, I introduced several shorthands as listed below. These are used to express numbers with a single 4:
where brackets denote the whole part function. ([x] is the largest integer not exceeding x.)
Now, let's agree to use {1},{30},{5},{120},{3} as substitutes for the corresponding formulas. Thus for example, {3} means 3 expressed as [√[√[√√√√√4!!]!]]. Similarly, {5} and {120} stand for 5 and 120, respectively, in terms of the just described expressions.
| 1 | 4·4/4/4 = (4 + 4)/(4 + 4) = 44/44(1) |
| 2 | 4/4 + 4/4 = 4/√4 + 4 - 4 |
| 3 | (4 + 4 + 4)/4 = 4!!/4 + 4/4 = 4!/4!!·4/4 |
| 4 | 4 + 4·(4 - 4) = 4!!/(4 + 4)·4 |
| 5 | (4 + 4·4)/4 = 4 + (√4 + √4)/4 |
| 6 | 4 + (4 + 4)/4 = 4!/4 + 4 - 4 |
| 7 | 4 + 4 - 4/4 = 4!/4 + 4/4 |
| 8 | 4 + 4 - 4 + 4 = 4!! + (4 - 4)/4 = (4 + 4)·4/4 |
| 9 | 4 + 4 + 4/4 = 4/.4 - 4/4 = 4/.(4) + 4 - 4 = (4!/4/√4)√4(1) |
| 10 | (44 - 4)/4 = 4/.4 - 4 + 4 = 44/4.4(1) |
| 11 | 44/(√4 + √4) = 4/.4 + 4/4 |
| 12 | (44 + 4)/4 = 4/.4 + 4/√4 |
| 13 | 44/4 + √4 = 4!! + 4 + 4/4 |
| 14 | 4!/4 + 4 + 4 = 4!! + 4 + 4/√4 |
| 15 | 4·4 - 4/4 = 44/4 + 4(1) = ((√√√4)4! - 4)/4(2) |
| 16 | 4 + 4 + 4 + 4 = 4·4·4/4 = 44/4/4 = 4! - 4 - 4 |
| 17 | 4·4 + 4/4 = ((√√√4)4! + 4)/4(2) |
| 18 | 4·4 + 4 - √4 |
| 19 | 4! - 4 - 4/4 = 4!!/.4 - 4/4 |
| 20 | (4! - 4)·4/4 = (4! - 4) + 4 - 4 = (4 + 4/4)·4 |
| 21 | 4! - 4 + 4/4 = 4!!/.4 + 4/4 |
| 22 | 4·4 + 4 + √4 = 4/.(4)·√4 + 4 |
| 23 | 4! - √4 + 4/4 = 4!!/.4 + 4/4 |
| 24 | 4·4 + 4 + 4 = 4/.4·√4 + 4 |
| 25 | 4! + (√4 + √4)/4 |
| 26 | 4! + (4 + 4)/4 |
| 27 | 4! + 4 - 4/4 = (4·4 - 4)/.4(1) |
| 28 | 4! + 4 + 4 - 4 = (4! + 4)·4/4 |
| 29 | 4! + 4 + 4/4 |
| 30 | 4·4·√4 - √4 = ((√√√4)4! - 4)/√4(2) |
| 31 | 4!!·4 - 4/4 = ((√√√4)4! - √4)/√4(2) |
| 32 | 4!!·4 + 4 - 4 |
| 33 | 4!!·4 + 4/4 = ((√√√4)4! + √4)/√4(2) |
| 34 | 4/.(4)·4 - √4 = 4·4·√4 + √4 = ((√√√4)4! + 4)/√4(2) |
| 35 | 4!!/.(√4) - 4/4 = 4! + 44/4 |
| 36 | 4·(4 + 4) + 4 = 4·4·√4 + 4 |
| 37 | 4!!/.(√4) + 4/4 |
| 38 | 4!!/.(√4) + 4/√4 |
| 39 | 4!!/.√4 - 4/4 |
| 40 | 4·4/.(4) + 4 = 4!!·(4 + 4/4) = 4!!/.√4 + 4 - 4 |
| 41 | 4!!/.√4 + 4/4 |
| 42 | 44 - 4/√4 |
| 43 | 44 - 4/4 |
| 44 | 44 + 4 - 4 |
| 45 | 44 + 4/4 |
| 46 | 44 + 4/√4 |
| 47 | 4!·√4 - 4/4 |
| 48 | 44 + √4 + √4 |
| 49 | 4!·√4 + 4/4 |
| 50 | 4!·√4 + 4/√4 |
| 51 | 4!·√4 + 4 - {1} = (4! - 4 + .4)/.4(1) |
| 52 | (4! + √4)·4/√4 |
| 53 | 4!·√4 + 4 + {1} |
| 54 | 4!·√4 + 4 + √4 |
| 55 | 44/√4/.4(1) |
| 56 | 4!·√4 + 4 + 4 = 4! + 4! + 4 + 4(1) |
| 57 | 44 + [√(4!!·4!)] |
| 58 | 4!/.4 - 4 + √4(1) |
| 59 | 4!/.4 - 4/4(1) |
| 60 | 4·4·4 - 4(1) |
| 61 | 4!/.4 + 4/4(1) |
| 62 | 4·4·4 - √4(1) = 4!!√4 - 4/√4 |
| 63 | 4!!√4 - 4/4 |
| 64 | 4! + 44 - 4(1) |
| 65 | 4!!√4 + 4/4 |
| 66 | 4!/.4 + 4!/4(1) = 4·4·4 + √4(1) |
| 67 | 4!!√4 + 4 - {1} |
| 68 | 4·4·4 + 4(1) |
| 69 | 4!!√4 + 4 + {1} |
| 70 | 44 + 4! + √4(1) |
| 71 | (4! + 4 + .4 )/.4(1) |
| 72 | (4!·4!)/(4 + 4)(1) |
| 73 | 4!!/.4 + [√(4!!·4!)] |
| 74 | 4!·4 - 4! - √4(1) |
| 75 | (4! + 4 + √4)/.4(1) |
| 76 | 4!·4 - 4! + 4(1) = (4! - 4)·4 - 4 = 4!!/.4·4 - 4 |
| 77 | (4!!)√4 + [√(4!!·4!)] |
| 78 | (4! - 4)·4 - √4(1) |
| 79 | (4! - 4)·4 - {1} |
| 80 | (44 - 4!)·4(1) = 4!!/.4·4·{1} |
| 81 | (4 - 4/4)4(1) |
| 82 | (4! - 4)·4 + √4(1) |
| 83 | 4!·4 - [√(4!!·4!)] |
| 84 | 44·√4 - 4(1) = (4! - √4)·4 -4(1) = (4! - 4)·4 + 4 = 4!!/.4·4 + 4 |
| 85 | (4! + 4/.4)/.4(1) |
| 86 | (4! - √4)·4 - √4(1) |
| 87 | (4! - √4)·4 - {1} |
| 88 | 44·(4 - √4)(1) = 4·4·4 + 4!(1) |
| 89 | (4! - √4)·4 + {1} |
| 90 | (4! - √4)·4 + √4(1) |
| 91 | 4!·4 - √4/.4 |
| 92 | (4! - 4/4)·4(1) |
| 93 | 4!·4 - [4/√√√4] |
| 94 | 4!·4 - 4 + √4(1) |
| 95 | 4!·4 - 4/4(1) |
| 96 | (4 + 4/4)! - 4!(1) |
| 97 | 4!·4 + 4/4(1) |
| 98 | 4!·4 + 4 - √4(1) |
| 99 | 4!·4 + 4 - {1} = 44/.(44) |
| 100 | (4! + 4/4)·4(1) = 44/.44(1) |
| 101 | 4!·4 + √4/.4 |
| 102 | 4!·4 + 4 + √4 |
| 103 | 4!·4 + 4!! - {1} |
| 104 | 4!·4 + 4 + 4 |
| 105 | 4!·4 + 4!! + {1} |
| 106 | 4!·4 + 4!! + √4 = 44/.4 - 4 |
| 107 | 44/.(4) + 4!! |
| 108 | 4!·4 + 4!! + 4 = 44/.4 - √4 |
| 109 | 44/.4 - {1} |
| 110 | 44/.4·{1} |
| 111 | 44/.4 + {1} |
| 112 | 44/.4 + √4 |
| 113 | 44/.4 + {3} |
| 114 | 44/.4 + 4 |
| 115 | 44/.4 + {5} |
| 116 | 4!/.4·√4 - 4 |
| 117 | 4!/.4·√4 - {3} |
| 118 | 4!/.4·√4 - √4 |
| 119 | 4!/.4·√4 - {1} |
| 120 | 4!/.4·√4·{1} |
| 121 | 4!/.4·√4 + {1} |
| 122 | 4!/.4·√4 + √4 |
| 123 | 4!/.4·√4 + {3} |
| 124 | 4!/.4·√4 + 4 = (4!!√4 - √4)·√4 = 4!!√4·√4 - 4 |
| 125 | 4!!√4·√4 - {3} |
| 126 | 4!!√4·√4 - √4 |
| 127 | 4!!√4·√4 - {1} |
| 128 | 4!!√4·√4·{1} |
| 129 | 4!!√4·√4 + {1} |
| 130 | 4!!√4·√4 + √4 |
| 131 | 4!!√4·√4 + {3} |
| 132 | 4!!√4·√4 + 4 |
| 133 | 4!!√4·√4 + {5} |
| 134 | {120} + 4/.4 + 4 = {120} + 4·4 - √4 |
| 135 | {120} + 4·4 - [√√4] |
| 136 | {120} + (√4 + √4)·4 = 4!!√4·√4 + 4!! |
| 137 | {120} + 4/.(4) + 4!! |
| 138 | {120} + 4·4 + √4 |
| 139 | {120} + [4·4!/√4!] |
| 140 | {120} + 4!! + 4!! + 4 = {120} + 4·4 + 4 |
| 141 | {120} + 4! - 4 + [√√4] |
| 142 | {120} + 4! - 4/√4 |
| 143 | {120} + 4! - 4/4 |
| 144 | {120} + 4! + 4 - 4 = {120} + 4!! + 4!! + 4!! |
| 145 | {120} + 4! + 4/4 |
| 146 | {120} + 4! + 4/√4 |
| 147 | {120} + 4! + 4 - [√√4] |
| 148 | {120} + 4! + √(4·4) |
| 149 | {120} + 4! + 4 + [√√4] |
| 150 | {120} + 4! + 4 + √4 |
| 151 | {120} + 4!!·4 - [√√4] |
| 152 | {120} + 4! + 4 + 4 |
| 153 | {120} + 4!!·4 + [√√4] = {120} + 4! + 4/.(4) |
| 154 | {120} + 4! + 4/.4 |
| 155 | {120} + {30} + 4 + {1} |
| 156 | {120} + {30} + 4 + √4 |
| 157 | {120} + {30} + 4 + {3} |
| 158 | {120} + {30} + 4 + 4 |
| 159 | {120} + {30} + {5} + 4 |
| 160 | {120} + {30} + {10}·{1} |
| 161 | {120} + {30} + {10} + {1} |
| 162 | {120} + {30} + {10} + √4 |
| 163 | {120} + {30} + {10} + {3} |
| 164 | {120} + {30} + {10} + 4 |
| 165 | {120} + {30} + {10} + {5} |
| 166 | {120} + {30} + 4!! + 4!! |
| 167 | {120} + 4! + 4! - {1} |
| 168 | {120} + 4! + 4!·{1} |
| 169 | {120} + 4! + 4! + {1} |
| 170 | {120} + 4! + 4! + √4 |
| 171 | {120} + 4! + 4! + {3} |
| 172 | {120} + 4! + 4! + 4 |
| 173 | {120} + 4! + 4! + {5} |
| 174 | {120} + 4! + 4! + {3}! |
| 175 | {120} + {30} + 4! + {1} |
| 176 | {120} + 4! + 4! + 4!! |
| 177 | {120} + {30} + 4! + {3} |
| 178 | {120} + {30} + 4! + 4 |
| 179 | {120} + {30} + 4! + {5} |
| 180 | {120} + {30} + {30}·{1} = {120} + {120} - {30} - {30} = {30}·{10} - {120}·{1} |
| 181 | {120} + {30} + {30} + {1} |
| 182 | {120} + {30} + {30} + √4 |
| 183 | {120} + {30} + {30} + {3} |
| 184 | {120} + {30} + {30} + 4 |
| 185 | {120} + {30} + {30} + {5} |
| 186 | {120} + {30} + {30} + {3}! |
| 187 | {120} + 4! · {3} - {5} |
| 188 | {120} + 4! · {3} - 4 |
| 189 | {120} + 4! · {3} - {3} |
| 190 | {120} + 4! · {3} - √4 |
| 191 | {120} + 4! · {3} - {1} |
| 192 | {120} + 4! + 4! + 4! |
| 193 | {120} + {26} · {3} - {5} |
| 194 | {120} + {26} · {3} - 4 |
| 195 | {120} + {26} · {3} - {3} |
| 196 | {120} + {26} · {3} - √4 |
| 197 | {120} + {26} · {3} - {1} |
| 198 | {120} + {26} · {3} · {1} |
| 199 | {120} + {26} · {3} + {1} |
| 200 | {120} + {26} · {3} + √4 |
| 201 | {120} + {26} · {3} + {3} |
| 202 | {120} + {26} · {3} + 4 |
| 203 | {120} + {26} · {3} + {5} |
| 204 | {120} + {26} · {3} + {3}! |
| 205 | {120} + {30} · {3} - {5} |
| 206 | {120} + {30} · {3} - 4 |
| 207 | {120} + {30} · {3} - {3} |
| 208 | {120} + {30} · {3} - √4 |
| 209 | {120} + {30} · {3} - {1} |
| 210 | {120} + {30} · {3} · {1} |
| 211 | {120} + {30} · {3} + {1} |
| 212 | {120} + {30} · {3} + √4 |
| 213 | {120} + {30} · {3} + {3} |
| 214 | {120} + {30} · {3} + 4 |
| 215 | {120} + {30} · {3} + {5} |
| 216 | {120} + {30} · {3} + {3}! |
| 217 | {120} + 4! · 4 + {1} |
| 218 | {120} + 4! · 4 + √4 |
| 219 | {120} + 4! · 4 + {3} |
| 220 | {120} + {30} · {3} + {10} = {120} + 4! · 4 + 4 |
| 221 | {120} + 4! · 4 + {5} |
| 222 | {120} + 4! · 4 + {3}! |
| 223 | {120} + {26} ·4 - {1} |
| 224 | {120} + {120} - 4*4 |
| 225 | {120} + {120} - {5} · {3} |
| 226 | {120} + {120} - 4! + {10} |
| 227 | {120} + {26} ·4 + {3} |
| 228 | {120} + {26} ·4 + 4 |
| 229 | {120} + {26} ·4 + {5} |
| 230 | {120} + {26} ·4 + {3}! |
| 231 | {120} + {120} - {3} - {3}! |
| 232 | {120} + {120} - {5} - {3} |
| 233 | {120} + {120} - 4 - {3} |
| 234 | {120} + {120} - {3} - {3} |
| 235 | {120} + {120} - 4 - {1} |
| 236 | {120} + {120} - 4 · {1} |
| 237 | {120} + {120} - 4 + {1} |
| 238 | {120} + {120} - {1} - {1} |
| 239 | {120} + {120} - {1} · {1} |
| 240 | {120} · {1} + {120} · {1} |
| 241 | {120} + {120} + {1} · {1} |
| 242 | {120} + {120} + {1} + {1} |
| 243 | {120} + {120} + 4 - {1} |
| 244 | {120} + {120} + 4 · {1} |
| 245 | {120} + {120} + 4 + {1} |
| 246 | {120} + {120} + {3} + {3} |
| 247 | {120} + {120} + 4 + {3} |
| 248 | {120} + {120} + {5} + {3} |
| 249 | {120} + {120} + {3} + {3}! |
| 250 | {120} + {120} + {5} + {5} |
| 251 | {120} + {120} + {5} + {3}! |
| 252 | {120} + {120} + {3} · 4 |
| 253 | {26} · {5} + {120} + {3} |
| 254 | {120} + {120} + 4! - {10} |
| 255 | {120} + {120} + {3} · {5} |
| 256 | {120} + {120} + 4 · 4 |
| 257 | {26} · {5} · {2} - {3} |
| 258 | {120} + {120} + 4! - {3}! |
| 259 | {120} + {120} + 4! - {5} |
| 260 | {120} + {120} + {10} + {10} |
| 261 | {26} · {10} + {1} · {1} |
| 262 | {26} · {10} + {1} + {1} |
| 263 | {26} · {10} + {3} · {1} |
| 264 | {26} · {10} + 4 · {1} |
| 265 | {26} · {10} + {5} · {1} |
| 266 | {26} · {10} + {3}! · {1} |
| 267 | {26} · {10} + {3} + 4 |
| 268 | {26} · {10} + 4 + 4 |
| 269 | {26} · {10} + {5} + 4 |
| 270 | {26} · {10} + {10} · {1} |
| 271 | {26} · {10} + {10} + {1} |
| 272 | {26} · {10} + {3}! + {3}! |
| 273 | {26} · {10} + {5} + 4!! |
| 274 | {26} · {10} + {10} + 4 |
| 275 | {26} · {10} + {10} + {5} |
| 276 | {26} · {10} + {10} + {3}! |
| 278 | {26} · {10} + 4! - {3}! |
| 279 | {26} · {10} + 4! - {5} |
| 280 | {26} · {10} + {10} + {10} |
| 281 | {26} · {10} + 4! - {3} |
| 282 | {26} · {10} + 4! - √4 |
| 283 | {26} · {10} + 4! - {1} |
| 284 | {26} · {10} + 4! · {1} |
| 285 | {26} · {10} + 4! + {1} |
| 286 | {26} · {10} + 4! + √4 |
| 287 | {26} · {10} + 4! + {3} |
| 288 | {26} · {10} + 4! + 4 |
| 289 | {26} · {10} + 4! + {5} |
| 290 | {26} · {10} + 4! + {3}! |
| 291 | {26} · {10} + {30} + {1} |
| 292 | {26} · {10} + 4! + 4!! |
| 293 | {26} · {10} + {30} + {3} |
| 294 | {26} · {10} + {30} + 4 |
| 295 | {26} · {10} + {30} + {5} |
| 296 | {26} · {10} + {30} + {3}! |
| 297 | {30} · {10} - {3} · {1} |
| 298 | {26} · {10} + {30} + 4!! |
| 299 | {30} · {10} - {1} · {1} |
| 300 | {30} · {10} · {1} · {1} |
| 301 | {30} · {10} + {1} · {1} |
| 302 | {30} · {10} + {1} + {1} |
| 303 | {30} · {10} + {3} · {1} |
| 304 | {30} · {10} + {3} + {1} |
| 305 | {30} · {10} + {5} · {1} |
| 306 | {30} · {10} + {5} + {1} |
| 307 | {30} · {10} + {10} - {3} |
| 308 | {30} · {10} + 4 + 4(1) |
| 309 | {30} · {10} + {10} - {1} |
| 310 | {30} · {10} + {10} · {1} |
| 311 | {30} · {10} + {10} + {1}(1) |
| 312 | {30} · {10} + {3}! + {3}! |
| 313 | {30} · {10} + {10} + {3} |
| 314 | {30} · {10} + {3}! + 4!! |
| 315 | {30} · {10} + {3}·{5} |
| 316 | {30} · {10} + 4·4 |
| 317 | 4! · {26} / √4 + {5}(1) |
| 318 | {30} · {10} + {3}·{3}! = ({3}·{6})√4 - {6} |
| 319 | {3}4 · 4 - {5}(1) = ({3}·{6})√4 - {5} |
| 320 | {30} · {10} + {10} + {10} = ({3}·{6})√4 - 4 |
| 321 | {3}4 · 4 - {3}(1) = ({3}·{6})√4 - {3} |
| 322 | {3}4 · 4 - √4(1) = ({3}·{6})√4 - √4 |
| 323 | {3}4 · 4 - {1}(1) = ({3}·{6})√4 - {1} |
| 324 | (4 - {1})4 · 4(1) = {3}·{6}·{3}·{6} = {3} · {120} - {30} - {6} |
| 325 | {3}4 · 4 + {1}(1) = ({3}·{6})√4 + {1} |
| 326 | {3}4 · 4 + √4(1) = ({3}·{6})√4 + √4 |
| 327 | {3}4 · 4 + {3}(1) = ({3}·{6})√4 + {3} |
| 328 | {3}4 · 4 + 4(1) = ({3}·{6})√4 + 4 |
| 329 | {3}4 · 4 + {5}(1) = ({3}·{6})√4 + {5} |
| 330 | {3}4 · 4 + {6}(1) = ({3}·{6})√4 + {6} = {3}·{120} - {30}·{1} |
| 331 | {3}·{120} - {30} + {1} |
| 332 | {3}·{120} - {30} + √4 |
| 333 | {3}·{120} - {30} + {3} |
| 334 | {3}·{120} - {30} + 4 = ({3}·{6})√4 + {10} |
| 335 | {3}·{120} - {30} + {5} |
| 336 | {3}·{120} - {30} + {6} |
| 337 | {3}·{120} - {26} + {3} |
| 338 | {3}·{120} - {26} + 4 |
| 339 | {3}·{120} - {26} + {5} |
| 340 | {3}·{120} - {30} + {10} = {3}·{120} - {26} + {6} |
| 341 | {3}·{120} - 4! + {5} |
| 342 | {3}·{120} - 4! + {6} |
| 343 | ({6} + {1}){3}·{1} |
| 344 | {3}·{120} - {26} + {10} |
| 345 | ({6} + {1}){3} + √4 |
| 346 | ({6} + {1}){3} + {3} |
| 347 | ({6} + {1}){3} + 4 |
| 348 | ({6} + {1}){3} + {5} |
| 349 | ({6} + {1}){3} + {6} |
| 350 | {3}·{120} - {10}·{1} |
| 351 | {3}·{120} - {10} + {1} |
| 352 | {3}·{120} - {10} + √4 |
| 353 | {3}·{120} - {10} + {3} |
| 354 | {3}·{120} - {10} + 4 |
| 355 | {3}·{120} - {10} + {5} |
| 356 | {3}·{120} - {10} + {6} |
| 357 | {3}·{120} - {3}·{1} |
| 358 | {3}·{120} - {1} - {1} |
| 359 | {3}·{120} - {1} · {1} |
| 360 | {3}·{120} - {1} + {1} |
| 361 | {3}·{120} + {1} · {1} |
| 362 | {3}·{120} + {1} + {1} |
| 363 | {3}·{120} + {3} · {1} |
| 364 | {3}·{120} + 4 · {1} | 365 | {3}·{120} + {5} · {1} |
| 366 | {3}·{120} + {6} · {1} |
| 366 | {3}·{120} + {6} · {1} |
| 367 | {3}·{120} + {6} + {1} = ({6} + {1}){3} + 4! |
| 368 | {3}·{120} + {6} + √4 |
| 369 | {3}·{120} + {6} + {3} = ({6} + {1}){3} + {26} |
| 370 | {3}·{120} + {10}·{1} |
| 371 | {3}·{120} + {10} + {1} |
| 372 | {3}·{120} + {10} + √4 |
| 373 | {3}·{120} + {10} + {3} |
| 374 | {3}·{120} + {10} + 4 |
| 375 | {3}·{120} + {10} + {5} |
| 376 | {3}·{120} + {10} + {6} |
| 377 | {3}({120} + 4) + {5}(3) |
| 378 | {3}·{120} + 4! - {6} = {3}({120} + 4) + {6} |
| 379 | {3}·{120} + 4! - {5} |
| 380 | {3}·{120} + {10} + {10} |
| 381 | {3}{120} + {26}- {5} |
| 382 | {3}({120} + 4) + {10} |
| 383 | 4!·4·4 - [√√4](4) |
| 384 | {3}({120} + {30}) - {6} |
| 385 | {3}({120} + {5}) + {10} = 4!·4·4 + [√√4](4) |
| 386 | 4!·4·4 + √4(4) |
(1) By Andre Gustavo dos Santos, Brasil
(2) By Richard Tschumpel, Vienna, Austria
On Internet
|Contact| |Front page| |Contents| |Up| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny
73385712
