Tetrahedron in Cube

Cube and tetrahedron are intimately related. Picking every other vertex of a cube so that no two are joined by an edges but any pair is joined by a diagonal of the cube's face one gets a regular tetrahedron. All edges of that shape are equal and, for that reason, all face angles are 60°.

What if applet does not run?

Drag the mouse to rotate the cube. Use the right button to remove and put back individual faces.

(Acknowledgement: I have learned most of Java details from the implementation by Meiko Rachimow.)

Related material
Read more...

  • Right Pentagonal Prism
  • Square Pyramid
  • Right Triangular Prism
  • Twisted Triangular Prism
  • Tetrahedron: an Interactive Model
  • Octahedron: an Interactive Model
  • Cube: an Interactive Model
  • Icosahedron: an Interactive Model
  • Dodecahedron: an Interactive Model
  • Three Pyramids are Better Than Two
  • Cube In Octahedron
  • Octahedron In Cube
  • Octahedron In Tetrahedron
  • Icosahedron In Cube
  • Great Stellated Dodecahedron
  • Lennes' Polyhedron
  • Triangulated Dinosaur
  • Volumes of Two Pyramids
  • Császár Polyhedron 1
  • Császár Polyhedron 4
  • Szilassi Polyhedron
  • Dissection of a Square Pyramid
  • |Activities| |Contact| |Front page| |Contents| |Geometry|

    Copyright © 1996-2018 Alexander Bogomolny

    71550804