# Distance Inequality

### Problem

### Solution 1

$a,b,c\,$ that satisfy constraints lie in triangle with vertices $A=\left(\frac{3}{2},\frac{3}{2},0\right)\,$ $B=\left(\frac{3}{2},0,\frac{3}{2}\right),\,$ and $C=\left(0,\frac{3}{2},\frac{3}{2}\right).\,$ On the other hand, $a^2+b^2+c^2\,$ is the square of the distance to the origin. Thus the question reduces to finding the farthest from the origin point in $\Delta ABC.$

The nearest point to the origin is clearly the center of the triangle as it's the foot of the perpendicular from the origin to the plane $a+b+c=3.\,$ Imagine an expanding sphere with the center at the origin. After reaching the center of the triangle, it will intersect the plane in expanding circles centered at the center of $\Delta ABC.\,$ The last position the points on that circle satisfy the constraints is when the circles passes through the vertices of the triangle. At these points,

$a^2+b^2+c^2=\displaystyle\frac{9}{4}+\frac{9}{4}+0=\frac{9}{2}.$

It follows that everywhere else in the triangle $a^2+b^2+c^2\le\frac{9}{2}.$

Just for the fun of it, note that without the constraint $a,b,c\in [0,\frac{3}{2}],\,$ the inquality to prove would be $a^2+b^2+c^2\le 9,\,$ with equality at points $(3,0,0),\,$ $(0,3,0),\,$ $(0,0,3).$

More interesting is, perhaps, the asymmetric case where $a,b,c\in [0,2].\,$ The inequality to prove appears to be $a^2+b^2+c^2\le 5,\,$ with equality at points $(2,1,0)\,$ and permutations.

### Solution 2

There exist $\lambda_1,\lambda_2,\lambda_3\in [0,1]\,$ such that

$\displaystyle\begin{align} a &= \lambda_1\cdot 0+(1-\lambda_1)\frac{3}{2};\\ b &= \lambda_2\cdot 0+(1-\lambda_2)\frac{3}{2};\\ c &= \lambda_3\cdot 0+(1-\lambda_3)\frac{3}{2}. \end{align}$

The constraint rewrites as $\displaystyle\sum_{k=1}^3(1-\lambda_k)\frac{3}{2}=3,\;$ so that $\displaystyle\sum_{k=1}^3\lambda_k=1.\,$ Further, using Jensen's inequality,

$\displaystyle\begin{align} a^2+b^2+c^2 &= \sum_{k=1}^3\left[\lambda_k\cdot 0+(1-\lambda_k)\frac{3}{2}\right]^2\\ &\le 0^2\sum_{k=1}^3\lambda_k+\left(\frac{3}{2}\right)^2\sum_{k=1}^3(1-\lambda_k)\\ &=\frac{9}{4}\left(3-\sum_{k=1}^3\lambda_k\right)\\ &=\frac{9}{4}\cdot 2=\frac{9}{2}. \end{align}$

### Illustration

### Acknowledgment

The problem has been kindly posted at the CutTheKnotMath facebook page by Leo Giugiuc, with a comment "Almost new year happy. Beautiful and a little complicated." Solution 2 is by Marian Dinca. Illustration is by Nassim Nicholas Taleb.

- An Inequality for Grade 8
- An Extension of the AM-GM Inequality
- Schur's Inequality
- Newton's and Maclaurin's Inequalities
- Rearrangement Inequality
- Chebyshev Inequality
- Jensen's Inequality
- Muirhead's Inequality
- Bergström's inequality
- Radon's Inequality and Applications
- Jordan and Kober Inequalities, PWW
- A Mathematical Rabbit out of an Algebraic Hat
- An Inequality With an Infinite Series
- An Inequality: 1/2 * 3/4 * 5/6 * ... * 99/100 less than 1/10
- A Low Bound for 1/2 * 3/4 * 5/6 * ... * (2n-1)/2n
- An Inequality: Easier to prove a subtler inequality
- Inequality with Logarithms
- An inequality: 1 + 1/4 + 1/9 + ... less than 2
- Inequality with Harmonic Differences
- An Inequality by Uncommon Induction
- Hlawka's Inequality
- An Inequality in Determinants
- Application of Cauchy-Schwarz Inequality
- An Inequality from Tibet
- An Inequality with Constraint
- An Inequality from Morocco
- An Inequality for Mixed Means
- An Inequality in Integers
- An Inequality in Integers II
- An Inequality in Integers III
- An Inequality with Exponents
- Exponential Inequalities for Means
- A Simple Inequality in Three Variables
- An Asymmetric Inequality
- Linear Algebra Tools for Proving Inequalities
- An Inequality with a Generic Proof
- A Generalization of an Inequality from a Romanian Olympiad
- Area Inequality in Trapezoid
- Improving an Inequality
- RomanoNorwegian Inequality
- Inequality with Nested Radicals II
- Inequality with Powers And Radicals
- Inequality with Two Minima
- Simple Inequality with Many Faces And Variables
- An Inequality with Determinants
- An Inequality with Determinants II
- An Inequality with Determinants III
- An Inequality with Determinants IV
- An Inequality with Determinants V
- An Inequality with Determinants VI
- An Inequality with Determinants VII
- An Inequality in Reciprocals
- An Inequality in Reciprocals II
- An Inequality in Reciprocals III
- Monthly Problem 11199
- A Problem from the Danubius Contest 2016
- A Problem from the Danubius-XI Contest
- An Inequality with Integrals and Rearrangement
- An Inequality with Cot, Cos, and Sin
- A Trigonometric Inequality from the RMM
- An Inequality with Finite Sums
- Hung Viet's Inequality
- Hung Viet's Inequality II
- Hung Viet's Inequality III
- Inequality by Calculus
- Dorin Marghidanu's Calculus Lemma
- An Area Inequality
- A 4-variable Inequality from the RMM
- An Inequality from RMM with Powers of 2
- A Cycling Inequality with Integrals
- A Cycling Inequality with Integrals II
- An Inequality with Absolute Values
- An Inequality from RMM with a Generic 5
- An Elementary Inequality by Non-elementary Means
- Inequality in Quadrilateral
- Marian Dinca's Refinement of Nesbitt's Inequality
- An Inequality in Cyclic Quadrilateral
- An Inequality in Cyclic Quadrilateral II
- An Inequality in Cyclic Quadrilateral III
- An Inequality in Cyclic Quadrilateral IV
- Inequality with Three Linear Constraints
- Inequality with Three Numbers, Not All Zero
- An Easy Inequality with Three Integrals
- Divide And Conquer in Cyclic Sums
- Wu's Inequality
- A Cyclic Inequality in Three Variables
- Dorin Marghidanu's Inequality in Complex Plane
- Dorin Marghidanu's Inequality in Integer Variables
- Dorin Marghidanu's Inequality in Many Variables
- Dorin Marghidanu's Inequality in Many Variables Plus Two More
- Dorin Marghidanu's Inequality with Radicals
- Dorin Marghidanu's Light Elegance in Four Variables
- Dorin Marghidanu's Spanish Problem
- Two-Sided Inequality - One Provenance
- An Inequality with Factorial
- Wonderful Inequality on Unit Circle
- Quadratic Function for Solving Inequalities
- An Inequality Where One Term Is More Equal Than Others
- An Inequality and Its Modifications
- Complicated Constraint - Simple Inequality
- Distance Inequality
- Two Products: Constraint and Inequality
- The power of substitution II: proving an inequality with three variables
- Algebraic-Geometric Inequality
- One Inequality - Two Domains
- Radicals, Radicals, And More Radicals in an Inequality
- An Inequality in Triangle and In General
- Cyclic Inequality with Square Roots
- Dan Sitaru's Cyclic Inequality In Many Variables
- An Inequality on Circumscribed Quadrilateral
- An Inequality with Fractions
- An Inequality with Complex Numbers of Unit Length
- An Inequality with Complex Numbers of Unit Length II
- Le Khanh Sy's Problem
- An Inequality Not in Triangle
- An Acyclic Inequality in Three Variables
- An Inequality with Areas, Norms, and Complex Numbers
- Darij Grinberg's Inequality In Three Variables
- Small Change Makes Big Difference
- Inequality with Two Variables? Think Again
- A Problem From a Mongolian Olympiad for Grade 11
- Sitaru--Schweitzer Inequality
- An Inequality with Cyclic Sums And Products
- Problem 1 From the 2016 Pan-African Math Olympiad
- An Inequality with Integrals and Radicals
- Twin Inequalities in Four Variables: Twin 1
- Twin Inequalities in Four Variables: Twin 2
- Simple Inequality with a Variety of Solutions
- A Partly Cyclic Inequality in Four Variables
- Dan Sitaru's Inequality by Induction
- An Inequality in Three (Or Is It Two) Variables
- An Inequality in Four Weighted Variables
- An Inequality in Fractions with Absolute Values
- Inequalities with Double And Triple Integrals
- An Old Inequality
- Dan Sitaru's Amazing, Never Ending Inequality
- Leo Giugiuc's Exercise
- Another Inequality with Logarithms, But Not Really
- A Cyclic Inequality of Degree Four
- An Inequality Solved by Changing Appearances
- Distances to Three Points on a Circle
- An Inequality with Powers And Logarithm
- Four Integrals in One Inequality
- Same Integral, Three Intervals
- Dorin Marghidanu's Inequality with Generalization
- Dan Sitaru's Inequality with Three Related Integrals and Derivatives
- An Inequality in Two Or More Variables
- An Inequality in Two Or More Variables II
- A Not Quite Cyclic Inequality
- Dan Sitaru's Inequality: From Three Variables to Many in Two Ways
- An Inequality with Sines But Not in a Triangle
- An Inequality with Angles and Integers
- Sladjan Stankovik's Inequality In Four Variables
- An Inequality with Two Pairs of Triplets
- A Refinement of Turkevich's Inequality
- Dan Sitaru's Exercise with Pi and Ln
- Problem 4165 from Crux Mathematicorum

|Contact| |Front page| |Contents| |Algebra| |Store|

Copyright © 1996-2017 Alexander Bogomolny62316110 |