Dan Sitaru's Cyclic Inequality in Three Variables II
Problem
Solution 1
We prove that $\displaystyle \sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}=1+\frac{1}{a}-\frac{1}{a+1}.\,$ Indeed, by squaring,
$\displaystyle \begin{align} &1+\frac{1}{a^2}+\frac{1}{(a+1)^2}=1+\frac{1}{a^2}+\frac{1}{(a+1)^2}+\frac{2}{a}-\frac{2}{a+1}-\frac{2}{a(a+1)}\\ &0=2\Bigr(\frac{1}{a}-\frac{1}{a+1}-\frac{1}{a(a+1)}\Bigr)\\ &0=\frac{a+1-a-1}{a(a+1)}\Leftrightarrow 0=0. \end{align}$
It follows that
$\displaystyle\begin{align} &\sum \sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}=\sum \Bigr(1+\frac{1}{a}-\frac{1}{a+1}\Bigr)\\ &\qquad\qquad=\sum \Bigr(1+\frac{a+1-a}{a(a+1)}\Bigr)\\ &\qquad\qquad=3+\sum \frac{1}{a^2+a}\overbrace{\geq}^{Bergstrom} 3+\frac{9}{\sum a^2+\sum a}\\ &\qquad\qquad=3+\frac{9}{(\sum a^2)-2\sum ab+3}\\ &\qquad\qquad=3+\frac{9}{9+3-2\sum ab}=3+\frac{9}{12-2(ab+bc+ca)}. \end{align}$
Solution 2
We have
$\begin{align}a^2(a+1)^2+a^2+(a+1)^2&=a^2(a+1)^2+2a(a+1)+1\\ &=(a^2+a+1)^2. \end{align}$
Hence, the required inequality is equivalent to
$\displaystyle \begin{align} \sum_{cycl}\frac{1}{a(a+1)}&\ge\frac{9}{12-2(ab+bc+ca)}\;\Leftrightarrow\\ &\sum_{cycl}\frac{1}{a}\ge\frac{9}{12-2(ab+bc+ca)}+\sum_{cycl}\frac{1}{a+1}. \end{align}$
We'll show that $\displaystyle \frac{3}{2}\ge \frac{9}{12-2(ab+bc+ca)}\,$ which is equivalent to $3\ge ab+bc+ca\,$ and the latter is well known consequence of the constraint $a+b+c=3.$
Thus, suffice it to prove that $\displaystyle \sum_{cycl}\frac{1}{a}\ge \frac{3}{2}+\sum_{cycl}\frac{1}{a+1},\,$ which is $\displaystyle \sum_{cycl}\left(\frac{1-a}{2}\right)\left(\frac{1}{a(a+1)}+\frac{1}{a}\right)\ge 0.$
But the functions $\displaystyle \frac{1-a}{2}\,$ and $\displaystyle \frac{1}{a(a+1)}+\frac{1}{a}\,$ are both decreasing, hence, by Chebyshev's inequality,
$\displaystyle \begin{align} &\sum_{cycl}\left(\frac{1-a}{2}\right)\left(\frac{1}{a(a+1)}+\frac{1}{a}\right)\\ &\qquad\qquad\ge\frac{1}{3}\left(\frac{3-a-b-c}{2}\right)\left(\frac{1}{a(a+1)}+\frac{1}{a}\right)=0. \end{align}$
Solution 3
By Minkowski's inequality,
$\displaystyle \sum_{cycl}\sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}\ge\sqrt{9+\left(\sum_{cycl}\frac{1}{a}\right)^2+\left(\sum_{cycl}\frac{1}{a+1}\right)^2}.$
Now note that
$\displaystyle\mathbf{\circ}\qquad\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{1}{a+b+c}=\frac{9}{3}=3,\\ \displaystyle\mathbf{\circ}\qquad\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\ge\frac{1}{a+b+c+3}=\frac{9}{6}=\frac{3}{2}$
Thus,
$\displaystyle \sum_{cycl}\sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}\ge\sqrt{9+9+\frac{9}{4}}=\frac{9}{2}.$
Suffice it to prove that
$\displaystyle \frac{9}{2}\ge\frac{9}{12-2(ab+bc+ca)}+3,$
or equivalently,
$\displaystyle \frac{3}{2}\ge\frac{9}{12-2(ab+bc+ca)},$
i.e.,
$36-6(ab+bc+ca)\ge 12,$
or
$ab+bc+ca\le 3,$
which is true because
$\displaystyle ab+bc+ca\le\frac{1}{3}(a+b+c)^2=\frac{1}{3}3^2=3.$
Solution 4
$y=x^{-2}\,$ being a convex function,
$\displaystyle \frac{1+x^{-2}}{2}\ge\left(\frac{1+x}{2}\right)^{-2},$
i.e.,
$\displaystyle 1+\frac{1}{x^2}\ge\frac{8}{(1+x)^2},$
implying
$\displaystyle 1+\frac{1}{x^2}+\frac{1}{(1+)^2}\ge\frac{9}{(1+x)^2}.$
Thus
$\displaystyle \sum_{cycl}\sqrt{1+\frac{1}{a^2}+\frac{1}{(1+a)^2}}\ge\sum_{cycl}\sqrt{\frac{9}{(a+1)^2}}=3\sum_{cycl}\frac{1}{a+1}.$
By the AM-HM inequality, $\displaystyle \sum_{cycl}\frac{1}{1+a}\ge\frac{\displaystyle 9}{\displaystyle \sum_{cycl}(a+1)}=\frac{3}{2}\,$ so that
(1)
$\displaystyle \sum_{cycl}\sqrt{1+\frac{1}{a^2}+\frac{1}{(1+a)^2}}\ge 3\sum_{cycl}\frac{1}{a+1}\ge\frac{9}{2}.$
Further, $\displaystyle \sum_{cycl}ab\le\frac{\displaystyle \left(\sum_{cycl}a\right)^2}{3}=3,\,$ such that $\displaystyle 12-2\sum_{cycl}ab\ge 6\,$ and
(2)
$\displaystyle \frac{\displaystyle 9}{\displaystyle 12-2\sum_{cycl}ab}+3\le\frac{9}{6}+3=\frac{9}{2}.$
From (1) and (2),
$\displaystyle \frac{\displaystyle 9}{\displaystyle 12-2\sum_{cycl}ab}+3\le\frac{9}{2}\le\sum_{cycl}\sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}.$
Solution 5
First,
$\displaystyle 1+\frac{1}{a^2}+\frac{1}{(a+1)^2} = \frac{(a^2+a+1)^2}{a^2(a+1)^2}$
so that
$\displaystyle \sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}} = \frac{a^2+a+1}{a(a+1)}=1+\frac{1}{a(a+1)}.$
Second,
$\displaystyle (a+b+c)^2=9=a^2+b^2+c^2+2(ab+bc+ca)$
so that
$\displaystyle 12-2(ab+bc+ca)=a^2+b^2+c^2+3.\,$
So, the inequality reduces to
$\displaystyle \sum_{cycl}\left(1+\frac{1}{a(a+1)}\right)\ge\frac{9}{3+a^2+b^2+c^2}+3,$
which simplifies further to
$\displaystyle \sum_{cycl}\frac{1}{a(a+1)}\ge\frac{9}{a^2+a+b^2+b+c^2+c}.$
For simplicity,let $x=a(a+1),\,$ $y=b(b+1),\,$ $z=c(c+1).\,$ The required inequality becomes
$\displaystyle \frac{1}{x}+\frac{1}{y}+\frac{1}{z}\ge\frac{9}{x+y+z}.$
Multiplying by $(x+y+z)\,$ we get
$\displaystyle 1+\frac{y}{x}+\frac{z}{x}+\frac{x}{y}+1+\frac{z}{y}+\frac{x}{z}+\frac{y}{z}+1\ge 9,$
or,
$\displaystyle \left(\frac{y}{x}+\frac{x}{y}\right)+\left(\frac{z}{y}+\frac{y}{z}\right)+\left(\frac{x}{z}+\frac{z}{x}\right)\ge 6$
which is true because, for $w\gt 0,\,$ $\displaystyle w+\frac{1}{w}\ge 2.$
Solution 6
$\displaystyle \sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}} =\frac{a^2+a+1}{a(a+1)} \geq\frac{3}{a+1} ~\text{(AM-GM to the numerator)},$
implying
$\displaystyle\begin{align} LHS\,&\geq 3\left(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}\right)\\ &\geq \frac{27}{(a+1)+(b+1)+(c+1)}\\ &= \frac{9}{2}~\text{(AM-HM)}. \end{align}$
From power-mean inequality,
$\displaystyle a^2+b^2+c^2 \geq \frac{(a+b+c)^2}{3} =3,$
implying
$2(ab+bc+ca)=(a+b+c)^2-(a^2+b^2+c^2) \leq 3^2-3=6,$
and
$\displaystyle RHS\leq \frac{9}{12-6}+3=\frac{9}{2}.$
Thus,
$\displaystyle LHS\geq\frac{9}{2}\geq RHS.$
Acknowledgment
Dan Sitaru has kindly shared a problem from his book Math Accent, with a solution of his (Solution 1) mailed on a LaTeX file, which I appreciate greatly. He also posted the problem at the CutTheKnotMath facebook page where it gathered some comments. Solution 2 is by Leo Giugiuc; Solution 3 is by Tri Nitrotoluen and independently by Subham Jaiswal. Ravi Prakash came up with a solution very close to Solution 1. Solution 4 is by Abdur Rahman; Solution5 is by Mike Lawler; Solution 6 is by Amit Itagi..
Inequalities with the Sum of Variables as a Constraint
- An Inequality for Grade 8 $\left(\displaystyle\frac{1-x_1}{1+x_1}\cdot\frac{1-x_2}{1+x_2}\cdot\ldots\cdot\frac{1-x_n}{1+x_n}\ge\frac{1}{3}\right)$
- An Inequality with Constraint $((x+1)(y+1)(z+1)\ge 4xyz)$
- An Inequality with Constraints II $\left(\displaystyle abc+\frac{2}{ab+bc+ca}=p+\frac{2}{q}\ge q-2+\frac{2}{q}\right)$
- An Inequality with Constraint V $\left(\displaystyle\prod_{k=1}^{n}x_k^{1/x_k}\le \frac{1}{n^{n^2}}\right)$
- An Inequality with Constraint VI $\left(\displaystyle\prod_{k=1}^{n}\frac{1+x_k}{x_k}\ge \prod_{k=1}^{n}\frac{n-x_k}{1-x_k}\right)$
- An Inequality with Constraint XI $(\sqrt{5a+4}+\sqrt{5b+4}+\sqrt{5c+4} \ge 7)$
- Monthly Problem 11199 $\left(\displaystyle\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\ge\frac{25}{1+48abc}\right)$
- Problem 11804 from the AMM $(10|x^3 + y^3 + z^3 - 1| \le 9|x^5 + y^5 + z^5 - 1|)$
- Sladjan Stankovik's Inequality With Constraint $\left(abc+bcd+cda+dab-abcd\le\displaystyle \frac{27}{16}\right)$
- Sladjan Stankovik's Inequality With Constraint II $(a^4+b^4+c^4+d^2+4abcd\ge 8)$
- An Inequality with Constraint V $\left(\displaystyle\prod_{k=1}^{n}x_k^{1/x_k}\le \frac{1}{n^{n^2}}\right)$
- An Inequality with Constraint VI $\left(\displaystyle\prod_{k=1}^{n}\frac{1+x_k}{x_k}\ge \prod_{k=1}^{n}\frac{n-x_k}{1-x_k}\right)$
- An Inequality with Constraint XII $(abcd\ge ab+bc+cd+da+ac+bd-5)$
- An Inequality with Constraint XIII $((3a-bc)(3b-ca)(3c-ab)\le 8a^2b^2c^2)$
- Inequalities with Constraint XV and XVI $\left(\displaystyle\frac{a^2}{\sqrt{b^2+4}}+\frac{b^2}{\sqrt{c^2+4}}+\frac{c^2}{\sqrt{a^2+4}}\gt\frac{3}{5}\right)$ and $\left(\displaystyle\frac{a^2}{\sqrt{b^4+4}}+\frac{b^2}{\sqrt{c^4+4}}+\frac{c^2}{\sqrt{a^4+4}}\gt\frac{3}{5}\right)$
- An Inequality with Constraint XVII $(a^3+b^3+c^3\ge 0)$
- An Inequality with Constraint in Four Variables $\left(\displaystyle\frac{a^3}{b+c}+\frac{b^3}{c+d}+\frac{c^3}{d+a}+\frac{d^3}{a+b}\ge\frac{1}{8}\right)$
- An Inequality with Constraint in Four Variables II $(a^3+b^3+c^3+d^3 + 6abcd \ge 10)$
- An Inequality with Constraint in Four Variables III $\left(\displaystyle\small{abcd+\frac{15}{2(ab+ac+ad+bc+bd+cd)}\ge\frac{9}{a^2+b^2+c^2+d^2}}\right)$
- An Inequality with Constraint in Four Variables IV $\left(\displaystyle 27+3(abc+bcd+cda+dab)\ge\sum_{cycl}a^3+54\sqrt{abcd}\right)$
- Inequality with Constraint from Dan Sitaru's Math Phenomenon $\left(\displaystyle b+2a+20\ge 2\sum_{cycl}\frac{a^2+ab+b^2}{a+b}\ge b+2c+20\right)$
- An Inequality with a Parameter and a Constraint $\left(\displaystyle a^4+b^4+c^4+\lambda abc\le\frac{\lambda +1}{27}\right)$
- Cyclic Inequality with Square Roots And Absolute Values $\left(\displaystyle \prod_{cycl}\left(\sqrt{a-a^2}+\frac{1}{2\sqrt{2}}|3a-1|\right)\ge\frac{1}{6\sqrt{6}}\prod_{cycl}\left(\sqrt{a}+\frac{1}{\sqrt{3}}\right)\right)$
- From Six Variables to Four - It's All the Same $\left(\displaystyle \frac{5}{2}\le a^2+b^2+c^2+d^2\le 5\right)$
- Michael Rozenberg's Inequality in Three Variables with Constraints $\left(\displaystyle 4\sum_{cycl}ab(a^2+b^2)\ge\sum_{cycl}a^4+5\sum_{cycl}a^2b^2+2abc\sum_{cycl}a\right)$
- Michael Rozenberg's Inequality in Two Variables $\left(\displaystyle \sqrt{x^2+3}+\sqrt{y^2+3}+\sqrt{xy+3}\ge 6\right)$
- Dan Sitaru's Cyclic Inequality in Three Variables II $\left(\displaystyle \sum_{cycl}\sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}\geq \frac{9}{12-2(ab+bc+ca)}+3\right)$
- Dan Sitaru's Cyclic Inequality in Three Variables IV $\left(\displaystyle \sum_{cycl}\frac{(x+y)z}{\sqrt{4x^2+xy+4y^2}}\le 2\right)$
- Dan Sitaru's Cyclic Inequality in Three Variables VI $\left(\displaystyle \sum_{cycl}\left[\sqrt{a(a+2b)}+\sqrt{b(b+2a)}\,\right]\le 6\sqrt{3}\right)$
- An Inequality with Arbitrary Roots $\left(\displaystyle \sum_{cycl}\left(\sqrt[n]{a+\sqrt[n]{a}}+\sqrt[n]{a-\sqrt[n]{a}}\right)\lt 18\right)$
- Inequality 101 from the Cyclic Inequalities Marathon $\left(\displaystyle \sum_{cycl}\frac{c^5}{(a+1)(b+1)}\ge\frac{1}{144}\right)$
- Sladjan Stankovik's Inequality With Constraint II $(a^4+b^4+c^4+d^2+4abcd\ge 8)$
- An Inequality with Constraint in Four Variables $\left(\displaystyle\frac{a^3}{b+c}+\frac{b^3}{c+d}+\frac{c^3}{d+a}+\frac{d^3}{a+b}\ge\frac{1}{8}\right)$
- An Inequality with Constraint in Four Variables IV $\left(\displaystyle 27+3(abc+bcd+cda+dab)\ge\sum_{cycl}a^3+54\sqrt{abcd}\right)$
- Cyclic Inequality with Square Roots And Absolute Values $\left(\displaystyle \prod_{cycl}\left(\sqrt{a-a^2}+\frac{1}{2\sqrt{2}}|3a-1|\right)\ge\frac{1}{6\sqrt{6}}\prod_{cycl}\left(\sqrt{a}+\frac{1}{\sqrt{3}}\right)\right)$
- From Six Variables to Four - It's All the Same $\left(\displaystyle \frac{5}{2}\le a^2+b^2+c^2+d^2\le 5\right)$
- Michael Rozenberg's Inequality in Two Variables $(\displaystyle \sqrt{x^2+3}+\sqrt{y^2+3}+\sqrt{xy+3}\ge 6)$
- Dan Sitaru's Cyclic Inequality in Three Variables II $\left(\displaystyle \sum_{cycl}\sqrt{1+\frac{1}{a^2}+\frac{1}{(a+1)^2}}\geq \frac{9}{12-2(ab+bc+ca)}+3\right)$
- Dorin Marghidanu's Two-Sided Inequality $\left(\displaystyle \small{64(a+bc)(b+ca)(c+ab)}\le \small{8(1-a^2)(1-b^2)(1-c^2)}\le \small{(1+a)^2(1+b)^2(1+c^2)}\right)$
- Problem 6 from Dan Sitaru's Algebraic Phenomenon $(x\sqrt{y+1}+y\sqrt{z+1}+z\sqrt{x+1}\le 2\sqrt{3})$
- A Warmup Inequality from Vasile Cirtoaje $\left(a^4b^4+b^4c^4+c^4a^4\le 3\right)$
- An Extension of the AM-GM Inequality $\left(x_{1}x_{2} + x_{2}x_{3} + x_{3}x_{4} + \ldots + x_{99}x_{100} \le \frac{1}{4}\right)$
- An Extension of the AM-GM Inequality: A second look $\left(x_{1}x_{2} + x_{2}x_{3} + x_{3}x_{4} + \ldots + x_{n-1}x_{n} \le \frac{a^2}{4}\right)$
- Distance Inequality $\left(a^2+b^2+c^2\le\displaystyle\frac{9}{2}\right)$
- Kunihiko Chikaya's Inequality with a Constraint $\left(4a^3+9b^3+36c^3\ge 1\right)$ An Inequality with Five Variables, Only Three Cyclic $\left(\displaystyle \left(a+\frac{b}{c}\right)^4+ \left(a+\frac{b}{d}\right)^4+ \left(a+\frac{b}{e}\right)^4\ge 3(a+3b)^4\right)$
- Second Pair of Twin Inequalities: Twin 1 $\left(\displaystyle \prod_{i=1}^n\left(\frac{1}{a_i^2}-1\right)\ge (n^2-1)^n\right)$
- Second Pair of Twin Inequalities: Twin 2 $\left(\displaystyle \prod_{i=1}^n\left(\frac{1}{a_i}+1\right)\ge (n+1)^{n}\right)$
- Cyclic Inequality In Three Variables from the 2018 Romanian Olympiad, Grade 9 $\left(\displaystyle \frac{a-1}{b+1}+\frac{b-1}{c+1}+\frac{c-1}{a+1}\ge 0\right)$
- Dan Sitaru's Cyclic Inequality in Three Variables IX $\left(\displaystyle \sum_{cycl}\sqrt{(x+y+1)(y+z+1)}\le 6+\sum_{cycl}\frac{x^3+y^3}{x^2+y^2}\right)$
- Vasile Cirtoaje's Cyclic Inequality with Three Variables $\left(\displaystyle \sqrt{\frac{a}{b+c}}+\sqrt{\frac{b}{c+a}}+\sqrt{\frac{c}{a+b}}\ge 2\right)$ Leo Giugiuc and Vasile Cirtoaje's Cyclic Inequality $\left(\displaystyle \sqrt{\frac{a}{1-a}}+\sqrt{\frac{b}{1-b}}+\sqrt{\frac{c}{1-c}}+\sqrt{\frac{d}{1-d}}\ge 2\right)$

|Contact| |Up| |Front page| |Contents| |Algebra|
Copyright © 1996-2018 Alexander Bogomolny71231091