# Segment Trisection Induced by Parallels to Medians

## What is this about?

A Mathematical Droodle

|Activities| |Contact| |Front page| |Contents| |Geometry|

Copyright © 1996-2018 Alexander Bogomolny

The applet attempts to suggest the following problem [Prasolov, p. 13]:

In ΔABC, AK and CL are two medians, P a point on AC, PE||AK and PF||CL (E on BC, F on AB). Prove that EF is divided into three equal parts by the points M and N of intersection with CL and AK.

Let Q and R be the intersections of AK with PF and CL with PE and let O be the centroid of ΔABC.

ER/KO = CR/CO = PR/AO,

so that

PR/ER = AO/KO = 2/1.

Since PF||CL, triangles ENR and EFP are similar, implying

2/1 = PR/ER = FN/NE,

so that NE = EF/3. Similarly, FM = EF/3 and then also MN = EF/3.

### References

|Activities| |Contact| |Front page| |Contents| |Geometry|

Copyright © 1996-2018 Alexander Bogomolny

70552787