Converting Temperature From $C^{\circ}$ to $F^{\circ}$

Problem

Converting Temperature From C to F, problem

Solution 2

The conversion from $C$ to $F$ is given by

$\displaystyle F=\frac{9}{5}C+32.$

The $32$ is just an integral constant, the rounding steps do not affect it, and can be dropped in the context of the problem. Also, the problem is periodic in $C$ with a period of $5$. So WLOG, we can map all the $C$ values modulo $5$ to a range $[0,5]$. Infact, the range $[2.5,5.0]$ can also be mapped to $[0,2.5]$ by using a map $f(x)=5.0-x$ without changing the considerations of the problem. This can be seen from the following argument. Consider two intervals $p\in [0,2.5)$ and $q\in (2.5,5]$ for $C$ (modulo $5$) (The second and third columns in the table below). The notation $R(\cdot)$ is for rounding. Whenever, $p$ is different from $R(p)$ or $9p/5$ is different from $R(9p/5)$, $q$ is symmetrically different from $R(q)$ and $9q/5$ from $R(9q/5)$.

$\begin{array}{ l | c |c | r } \hline C && 5K+p & 5K+q \\ && & (=5K+5-p) \\ \hline \hline R(C) && 5K+R(p) & 5K+5-R(p) \\ \hline 9C/5 && 9K+9p/5 & 9K+9q/5 \\ && & (=9K+9-9p/5) \\ \hline R(9C/5) && R(9p/5) & 9-R(9p/5) \\ \hline \end{array}$

Thus, WLOG, let us assume $0\leq C\leq 2.5$ and $F=\frac{9}{5}C$. Hence, with or without any of the rounding steps, the converted $F$ will lie in $[0,4.5]$. The notation $R(\cdot)$ is used for rounding. The different intervals are tabulated below:

$ \begin{array}{ l | c | c | c| r } \hline C & R(C) & 9C/5 & 9~R(C)/5 & 9C/5 \text{ intervals with} \\ & & & & \text{differences in rounded values} \\ \hline 0-0.5 & 0 & 0-0.9 & 0 & 0.5-0.9 \\ 0.5-1.0 & 1 & 0.9-1.8 & 1.8 & 0.9-1.5 \\ 1.0-1.5 & 1 & 1.8-2.7 & 1.8 & 2.5-2.7 \\ 1.5-2.0 & 2 & 2.7-3.6 & 3.6 & 2.7-3.5 \\ 2.0-2.5 & 2 & 3.6-4.5 & 3.6 & N/A \\ \hline \end{array}$

Thus, the required probability is

$\displaystyle \frac{(0.9-0.5)+(1.5-0.9)+(2.7-2.5)+(3.5-2.7)}{4.5} =\frac{2}{4.5}=\frac{4}{9}$

Illustration

The graph below lets one visually compare to kinds of conversion:

Converting Temperature From C to F, illustration

The graphs were produced by this small piece of code:

Converting Temperature From C to F, code

Different ranges

$\begin{array}{ccc} 15^{\circ}-16^{\circ}&-&1/9\\ 16^{\circ}-17^{\circ}&-&2/9\\ 17^{\circ}-18^{\circ}&-&3/9\\ 18^{\circ}-19^{\circ}&-&4/9\\ 19^{\circ}-20^{\circ}&-&5/9\\ 20^{\circ}-21^{\circ}&-&1/9\\ 21^{\circ}-22^{\circ}&-&2/9\\ 22^{\circ}-23^{\circ}&-&3/9\end{array}$

Acknowledgment

The problem is #108 from A Mathematical Orchard by M. I. Krusemeyer, G. T. Gilbert, L. C. Larson (MAA, 2012).

Solution 2 is by Amit Itagi. Keith Dawid has kindly supplies the table of probabilities for a vareity of ranges. The illutsration is by Attila Kun.

 

508 Resource Limit Is Reached

Resource Limit Is Reached

The website is temporarily unable to service your request as it exceeded resource limit. Please try again later.

|Contact| |Front page| |Contents| |Probability|

Copyright © 1996-2018 Alexander Bogomolny
508 Resource Limit Is Reached

Resource Limit Is Reached

The website is temporarily unable to service your request as it exceeded resource limit. Please try again later.
508 Resource Limit Is Reached

Resource Limit Is Reached

The website is temporarily unable to service your request as it exceeded resource limit. Please try again later.