Iterated Function Systems

Iterated Function System (IFS) is a collection of contracting operators that act on subsets of vector spaces. And, as such, they have a fixed point which also a subset of the underlying space. The fixed points of the IFS can be obtain by iterative processes with a random selection of operators from the IFS and can, therefore, be defined algorithmically. Very complex sets may, therefore, be defined with very few parameters (that specify the operators in the IFS.)

The applet below is a tool for forming IFSs with affine transforms. There are several built-in examples that could be modified and the new system can also be defined.


This applet requires Sun's Java VM 2 which your browser may perceive as a popup. Which it is not. If you want to see the applet work, visit Sun's website at https://www.java.com/en/download/index.jsp, download and install Java VM and enjoy the applet.


What if applet does not run?

Explanation

About Fractals

|Activities| |Contact| |Front page| |Contents| |Geometry|

Copyright © 1996-2018 Alexander Bogomolny

72109789