# Dissection of a Vase

What is this about?

A Mathematical Droodle

What if applet does not run? |

|Activities| |Contact| |Front page| |Contents| |Geometry|

Copyright © 1996-2017 Alexander BogomolnyThe applet is intended to help raise and answer a question about a shape (that might remind one of a vase) whose border consists of six quarter circles drawn with the same radius:

Given the radius, say R, of the arcs, what is the area of the vase?

What if applet does not run? |

The top of the vase if complemented by four circular sectors with central angle of 90° becomes a square of the side equal to the diameter of the arcs and circles, i.e., 2R. One of the sectors (the lowest) is already inside the intended square; the other three find there locations by dragging the scroll bar and come from the remaining three quarters of a circular part of the vase. It follows that - by dissection - the area of the vase equals that of the square.

### References

- I. Moskovich,
*Leonardo's Mirror and Other Puzzles*, Dover, 2011

### Equidecomposition by Dissiection

- Carpet With a Hole
- Equidecomposition of a Rectangle and a Square
- Equidecomposition of Two Parallelograms
- Equidecomposition of Two Rectangles
- Equidecomposition of a Triangle and a Rectangle
- Equidecomposition of a Triangle and a Rectangle II
- Two Symmetric Triangles Are Directly Equidecomposable
- Wallace-Bolyai-Gerwien Theorem
- Perigal's Proof of the Pythagorean Theorem
- A Proof Perigal and All Others After Him Missed
- Dissection of a Vase
- Curvy Dissection

|Activities| |Contact| |Front page| |Contents| |Geometry|

Copyright © 1996-2017 Alexander Bogomolny62618414 |